Lagrangian reduction of forced discrete mechanical systems

被引:0
|
作者
Caruso, Matias, I [1 ,2 ,3 ]
Fernandez, Javier [4 ]
Tori, Cora [2 ,5 ]
Zuccalli, Marcela [1 ,2 ]
机构
[1] Univ Nacl La Plata, Fac Ciencias Exactas, Dept Matemat, La Plata, Argentina
[2] Ctr Matemat La Plata CMaLP, La Plata, Argentina
[3] Consejo Nacl Invest Cient & Tecn CONICET, Buenos Aires, Argentina
[4] Univ Nacl Cuyo CNEA, Inst Balseiro, San Carlos De Bariloche, Argentina
[5] Univ Nacl La Plata, Fac Ingn, Dept Ciencias Basicas, La Plata, Argentina
关键词
geometric mechanics; forced discrete mechanical systems; symmetry and reduction; LIE-GROUPS; INTEGRATORS;
D O I
10.1088/1751-8121/aceae3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we propose a process of Lagrangian reduction and reconstruction for symmetric discrete-time mechanical systems acted on by external forces, where the symmetry group action on the configuration manifold turns it into a principal bundle. We analyze the evolution of momentum maps and Poisson structures under different conditions.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] LAGRANGIAN REDUCTION OF DISCRETE MECHANICAL SYSTEMS BY STAGES
    Fernandez, Javier
    Tori, Cora
    Zuccalli, Marcela
    JOURNAL OF GEOMETRIC MECHANICS, 2016, 8 (01): : 35 - 70
  • [2] LAGRANGIAN REDUCTION OF NONHOLONOMIC DISCRETE MECHANICAL SYSTEMS
    Fernandez, Javier
    Tori, Cora
    Zuccalli, Marcela
    JOURNAL OF GEOMETRIC MECHANICS, 2010, 2 (01): : 69 - 111
  • [3] LAGRANGIAN REDUCTION OF NONHOLONOMIC DISCRETE MECHANICAL SYSTEMS BY STAGES
    Fernandez, Javier
    Tori, Cora
    Zuccalli, Marcela
    JOURNAL OF GEOMETRIC MECHANICS, 2020, 12 (04): : 607 - 639
  • [4] Hybrid Routhian reduction for simple hybrid forced Lagrangian systems
    Eyrea Irazu, Maria Emma
    Lopez-Gordon, Asier
    de Leon, Manuel
    Colombo, Leonardo J.
    2022 EUROPEAN CONTROL CONFERENCE (ECC), 2022, : 345 - 350
  • [5] Discrete Dirac reduction of implicit Lagrangian systems with abelian symmetry groups
    Rodriguez Abella, Alvaro
    Leok, Melvin
    JOURNAL OF GEOMETRIC MECHANICS, 2023, 15 (01): : 319 - 356
  • [6] Variational order for forced Lagrangian systems
    Martin de Diego, D.
    Martin de Almagro, R. Sato
    NONLINEARITY, 2018, 31 (08) : 3814 - 3846
  • [7] Contracting Forced Lagrangian and Contact Lagrangian Systems: application to nonholonomic systems with symmetries
    Simoes, Alexandre Anahory
    Colombo, Leonardo
    2023 AMERICAN CONTROL CONFERENCE, ACC, 2023, : 909 - 916
  • [8] Optimal control for holonomic and nonholonomic mechanical systems with symmetry and Lagrangian reduction
    Univ of California, Berkeley, United States
    SIAM J Control Optim, 3 (901-929):
  • [9] Optimal control for holonomic and nonholonomic mechanical systems with symmetry and Lagrangian reduction
    Koon, WS
    Marsden, JE
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1997, 35 (03) : 901 - 929
  • [10] Discrete Embeddings for Lagrangian and Hamiltonian Systems
    Cresson, Jacky
    Greff, Isabelle
    Pierre, Charles
    ACTA MATHEMATICA VIETNAMICA, 2018, 43 (03) : 391 - 413