Evolution driven by the infinity fractional Laplacian

被引:0
|
作者
del Teso, Felix [1 ]
Endal, Jorgen [1 ,2 ]
Jakobsen, Espen R. [2 ]
Luis Vazquez, Juan [1 ]
机构
[1] Univ Autonoma Madrid, Dept Matemat, Madrid, Spain
[2] Norwegian Univ Sci & Technol, Dept Math Sci, Trondheim, Norway
基金
瑞典研究理事会; 芬兰科学院;
关键词
35R11; 35K55; 35A01; 35B45; TUG-OF-WAR; MEAN-VALUE CHARACTERIZATION; VISCOSITY SOLUTIONS; ASYMPTOTIC-BEHAVIOR; DIRICHLET PROBLEM; HEAT-EQUATION;
D O I
10.1007/s00526-023-02475-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the evolution problem associated to the infinity fractional Laplacian introduced by Bjorland et al. (Adv Math 230(4-6):1859-1894, 2012) as the infinitesimal generator of a non-Brownian tug-of-war game. We first construct a class of viscosity solutions of the initial-value problem for bounded and uniformly continuous data. An important result is the equivalence of the nonlinear operator in higher dimensions with the one-dimensional fractional Laplacian when it is applied to radially symmetric and monotone functions. Thanks to this and a comparison theorem between classical and viscosity solutions, we are able to establish a global Harnack inequality that, in particular, explains the long-time behavior of the solutions.
引用
收藏
页数:30
相关论文
共 50 条
  • [41] ON THE LAPLACIAN AND FRACTIONAL LAPLACIAN IN AN EXTERIOR DOMAIN
    Kosloff, Leonardo
    Schonbek, Tomas
    ADVANCES IN DIFFERENTIAL EQUATIONS, 2012, 17 (1-2) : 173 - 200
  • [42] Discontinuous Gradient Constraints and the Infinity Laplacian
    Juutinen, Petri
    Parviainen, Mikko
    Rossi, Julio D.
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2016, 2016 (08) : 2451 - 2492
  • [43] On the behavior of least energy solutions of a fractional (p, q(p))-Laplacian problem as p goes to infinity
    Ercole, Grey
    Medeiros, Aldo H. S.
    Pereira, Gilberto A.
    ASYMPTOTIC ANALYSIS, 2021, 123 (3-4) : 237 - 262
  • [44] Infinity Laplacian equations with singular absorptions
    Damião J. Araújo
    Ginaldo S. Sá
    Calculus of Variations and Partial Differential Equations, 2022, 61
  • [45] Optimal Lipschitz extensions and the infinity laplacian
    Crandall M.G.
    Evans L.C.
    Gariepy R.F.
    Calculus of Variations and Partial Differential Equations, 2001, 13 (2) : 123 - 139
  • [46] Tug-of-war and the infinity Laplacian
    Peres, Yuval
    Schramm, Oded
    Sheffield, Scott
    Wilson, David B.
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 22 (01) : 167 - 210
  • [47] Tangent lines of contact for the infinity Laplacian
    Yu, YF
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2004, 21 (04) : 349 - 355
  • [48] Optimal regularity for the pseudo infinity Laplacian
    Rossi, Julio D.
    Saez, Mariel
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2007, 13 (02) : 294 - 304
  • [49] Infinity Laplacian equation with strong absorptions
    Araujo, Damiao J.
    Leitao, Raimundo
    Teixeira, Eduardo V.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 270 (06) : 2249 - 2267
  • [50] A PDE Perspective of the Normalized Infinity Laplacian
    Lu, Guozhen
    Wang, Peiyong
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2008, 33 (10) : 1788 - 1817