Evolution driven by the infinity fractional Laplacian

被引:0
|
作者
del Teso, Felix [1 ]
Endal, Jorgen [1 ,2 ]
Jakobsen, Espen R. [2 ]
Luis Vazquez, Juan [1 ]
机构
[1] Univ Autonoma Madrid, Dept Matemat, Madrid, Spain
[2] Norwegian Univ Sci & Technol, Dept Math Sci, Trondheim, Norway
基金
瑞典研究理事会; 芬兰科学院;
关键词
35R11; 35K55; 35A01; 35B45; TUG-OF-WAR; MEAN-VALUE CHARACTERIZATION; VISCOSITY SOLUTIONS; ASYMPTOTIC-BEHAVIOR; DIRICHLET PROBLEM; HEAT-EQUATION;
D O I
10.1007/s00526-023-02475-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the evolution problem associated to the infinity fractional Laplacian introduced by Bjorland et al. (Adv Math 230(4-6):1859-1894, 2012) as the infinitesimal generator of a non-Brownian tug-of-war game. We first construct a class of viscosity solutions of the initial-value problem for bounded and uniformly continuous data. An important result is the equivalence of the nonlinear operator in higher dimensions with the one-dimensional fractional Laplacian when it is applied to radially symmetric and monotone functions. Thanks to this and a comparison theorem between classical and viscosity solutions, we are able to establish a global Harnack inequality that, in particular, explains the long-time behavior of the solutions.
引用
收藏
页数:30
相关论文
共 50 条
  • [1] Evolution driven by the infinity fractional Laplacian
    Félix del Teso
    Jørgen Endal
    Espen R. Jakobsen
    Juan Luis Vázquez
    Calculus of Variations and Partial Differential Equations, 2023, 62
  • [2] The obstacle problem for the infinity fractional laplacian
    Moreno Mérida L.
    Vidal R.E.
    Rendiconti del Circolo Matematico di Palermo Series 2, 2018, 67 (1): : 7 - 15
  • [3] On asymptotic expansions for the fractional infinity Laplacian
    del Teso, Felix
    Endal, Jorgen
    Lewicka, Marta
    ASYMPTOTIC ANALYSIS, 2022, 127 (03) : 201 - 216
  • [4] On the evolution governed by the infinity Laplacian
    Petri Juutinen
    Bernd Kawohl
    Mathematische Annalen, 2006, 335 : 819 - 851
  • [5] On the evolution governed by the infinity Laplacian
    Juutinen, Petri
    Kawohl, Bernd
    MATHEMATISCHE ANNALEN, 2006, 335 (04) : 819 - 851
  • [6] Nonlocal Tug-of-War and the Infinity Fractional Laplacian
    Bjorland, C.
    Caffarelli, L.
    Figalli, A.
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2012, 65 (03) : 337 - 380
  • [7] A Holder infinity Laplacian obtained as limit of Orlicz fractional Laplacians
    Fernandez Bonder, Julian
    Perez-Llanos, Mayte
    Salort, Ariel M.
    REVISTA MATEMATICA COMPLUTENSE, 2022, 35 (02): : 447 - 483
  • [8] Topological differences at infinity for nonlinear problems related to the fractional Laplacian
    Wael Abdelhedi
    Azeb Alghanemi
    Hichem Chtioui
    Proceedings - Mathematical Sciences, 2022, 132
  • [9] Topological differences at infinity for nonlinear problems related to the fractional Laplacian
    Abdelhedi, Wael
    Alghanemi, Azeb
    Chtioui, Hichem
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2022, 132 (01):
  • [10] On critical Kirchhoff problems driven by the fractional Laplacian
    Appolloni, Luigi
    Bisci, Giovanni Molica
    Secchi, Simone
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2021, 60 (06)