UniSKGRep: A unified representation learning framework of social network and knowledge graph

被引:3
|
作者
Shen, Yinghan [1 ,2 ]
Jiang, Xuhui [1 ,2 ]
Li, Zijian [1 ,2 ]
Wang, Yuanzhuo [1 ,3 ,6 ]
Xu, Chengjin [5 ]
Shen, Huawei [1 ,2 ]
Cheng, Xueqi [1 ,2 ,4 ]
机构
[1] Chinese Acad Sci, Inst Comp Technol, Data Intelligent Syst Res Ctr, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Sch Comp Sci & Technol, Beijing, Peoples R China
[3] Zhongke Big Data Acad, Zhengzhou, Henan, Peoples R China
[4] Inst Comp Technol, Chinese Acad Sci, Key Lab Network data & Sci & Technol, Beijing, Peoples R China
[5] Int Digital Econ Acad, Shenzhen, Guangdong, Peoples R China
[6] 6 Kexueyuan South Rd Zhongguancun, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
Social knowledge graph; Graph representation learning; Knowledge graph; Social network;
D O I
10.1016/j.neunet.2022.11.010
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The human-oriented applications aim to exploit behaviors of people, which impose challenges on user modeling of integrating social network (SN) with knowledge graph (KG), and jointly analyzing two types of graph data. However, existing graph representation learning methods merely represent one of two graphs alone, and hence are unable to comprehensively consider features of both SN and KG with profiling the correlation between them, resulting in unsatisfied performance in downstream tasks. Considering the diverse gap of features and the difficulty of associating of the two graph data, we introduce a Unified Social Knowledge Graph Representation learning framework (UniSKGRep), with the goal to leverage the multi-view information inherent in the SN and KG for improving the downstream tasks of user modeling. To the best of our knowledge, we are the first to present a unified representation learning framework for SN and KG. Concretely, the SN and KG are organized as the Social Knowledge Graph (SKG), a unified representation of SN and KG. For the representation learning of SKG, first, two separate encoders in the Intra-graph model capture both the social-view and knowledge-view in two embedding spaces, respectively. Then the Inter-graph model is learned to associate the two separate spaces via bridging the semantics of overlapping node pairs. In addition, the overlapping node enhancement module is designed to effectively align two spaces with the consideration of a relatively small number of overlapping nodes. The two spaces are gradually unified by continuously iterating the joint training procedure. Extensive experiments on two real-world SKG datasets have proved the effectiveness of UniSKGRep in yielding general and substantial performance improvement compared with the strong baselines in various downstream tasks.(c) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页码:142 / 153
页数:12
相关论文
共 50 条
  • [41] A Joint Framework for Explainable Recommendation with Knowledge Reasoning and Graph Representation
    Zhang, Luhao
    Fang, Ruiyu
    Yang, Tianchi
    Hu, Maodi
    Li, Tao
    Shi, Chuan
    Wang, Dong
    [J]. DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, DASFAA 2022, PT III, 2022, : 351 - 363
  • [42] A unified framework for structured graph learning via spectral constraints
    Kumar, Sandeep
    Ying, Jiaxi
    Cardoso, José Vinícius de M.
    Palomar, Daniel P.
    [J]. Journal of Machine Learning Research, 2020, 21
  • [43] A Unified Framework Based on Graph Consensus Term for Multiview Learning
    Meng, Xiangzhu
    Feng, Lin
    Guo, Chonghui
    Wang, Huibing
    Wu, Shu
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (03) : 3964 - 3977
  • [44] JKRL: Joint Knowledge Representation Learning of Text Description and Knowledge Graph
    Xu, Guoyan
    Zhang, Qirui
    Yu, Du
    Lu, Sijun
    Lu, Yuwei
    [J]. SYMMETRY-BASEL, 2023, 15 (05):
  • [45] Research Progress of Knowledge Graph Completion Based on Knowledge Representation Learning
    Yu, Mengbo
    Du, Jianqiang
    Luo, Jigen
    Nie, Bin
    Liu, Yong
    Qiu, Junyang
    [J]. Computer Engineering and Applications, 2023, 59 (18) : 59 - 73
  • [47] A Unified Framework for Structured Graph Learning via Spectral Constraints
    Kumar, Sandeep
    Ying, Jiaxi
    Cardoso, Jose Vincius de M.
    Palomar, Daniel P.
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2020, 21
  • [48] A unified embedding-based relation completion framework for knowledge graph
    Zhong, Hao
    Li, Weisheng
    Zhang, Qi
    Lin, Ronghua
    Tang, Yong
    [J]. KNOWLEDGE-BASED SYSTEMS, 2024, 289
  • [49] A Novel Knowledge Representation Framework for Computing Sub-Graph Isomorphic Queries in Interaction Network Databases
    Jamil, Hasan
    [J]. ICTAI: 2009 21ST INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, 2009, : 131 - 138
  • [50] A unified kernel sparse representation framework for supervised learning problems
    Ye, Junyou
    Yang, Zhixia
    Zhu, Yongqi
    Zhang, Zheng
    [J]. NEURAL COMPUTING & APPLICATIONS, 2023, 36 (09): : 4907 - 4930