Text-Based Face Retrieval: Methods and Challenges

被引:0
|
作者
Deng, Yuchuan [1 ]
Zhao, Qijun [1 ]
Hu, Zhanpeng [1 ]
Xu, Zixiang [1 ]
机构
[1] Sichuan Univ, Coll Comp Sci, Chengdu, Peoples R China
来源
关键词
Text-based Face Retrieval; Visual-Language Pre-trainning;
D O I
10.1007/978-981-99-8565-4_15
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Previous researches on face retrieval have concentrated on using image-based queries. In this paper, we focus on the task of retrieving faces from a database based on queries given as texts, which holds significant potential for practical applications in public security and multimedia. Our approach employs a vision-language pre-training model as the backbone, effectively incorporating contrastive learning, image-text matching learning, and masked language modeling tasks. Furthermore, it employs a coarse-to-fine retrieval strategy to enhance the accuracy of text-based face retrieval. We present CelebA-Text-Identity dataset, comprising of 202,599 facial images of 10,178 unique identities, each paired with an accompanying textual description. The experimental results we obtained on CelebA-Text-Identity demonstrate the inherent challenges of text-based face retrieval. We expect that our proposed benchmark will encourage the advancement of biometric retrieval techniques and expand the range of applications for text-image retrieval technology.
引用
收藏
页码:150 / 159
页数:10
相关论文
共 50 条
  • [31] Text-based informatics
    Valdes-Perez, RE
    SCIENTIST, 1998, 12 (14): : 10 - 10
  • [32] Text-based relevance-feedback for content-based image retrieval systems
    Raez, Arturo Montejo
    Ortega, Jose Manuel Perea
    Galiano, Manuel Carlos Diaz
    Lopez, L. Alfonso Urena
    PROCESAMIENTO DEL LENGUAJE NATURAL, 2009, (43): : 177 - 183
  • [33] Modal Complementarity Based on Multimodal Large Language Model for Text-Based Person Retrieval
    Bao, Tong
    Xu, Tong
    Xu, Derong
    Zheng, Zhi
    WEB AND BIG DATA, APWEB-WAIM 2024, PT I, 2024, 14961 : 264 - 279
  • [34] Text-Based Image Retrieval using Progressive Multi-Instance Learning
    Li, Wen
    Duan, Lixin
    Xu, Dong
    Tsang, Ivor Wai-Hung
    2011 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2011, : 2049 - 2055
  • [35] Causality-Inspired Invariant Representation Learning for Text-Based Person Retrieval
    Liu, Yu
    Qin, Guihe
    Chen, Haipeng
    Cheng, Zhiyong
    Yang, Xun
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 12, 2024, : 14052 - 14060
  • [36] Evaluation of N-grams conflation approach in text-based information retrieval
    Kosinov, S
    EIGHTH SYMPOSIUM ON STRING PROCESSING AND INFORMATION RETRIEVAL, PROCEEDINGS, 2001, : 136 - 142
  • [37] Semantic text-based image retrieval with multi-modality ontology and DBpedia
    Aspura, Yanti Idaya M. K.
    Noah, Shahrul Azman Mohd
    ELECTRONIC LIBRARY, 2017, 35 (06): : 1191 - 1214
  • [38] Detection Systems for Text-Based Plagiarism: Developments, Principles, Challenges, and the Aftermath
    Decoo, Wilfried
    Colpaert, Jozef
    WRITING & PEDAGOGY, 2010, 2 (02): : 311 - 320
  • [39] Text-Based Audio Retrieval by Learning From Similarities Between Audio Captions
    Xie, Huang
    Khorrami, Khazar
    Rasanen, Okko
    Virtanen, Tuomas
    IEEE Signal Processing Letters, 2025, 32 : 221 - 225
  • [40] Improving Query and Assessment Quality in Text-Based Interactive Video Retrieval Evaluation
    Bailer, Werner
    Arnold, Rahel
    Benz, Vera
    Coccomini, Davide Alessandro
    Gkagkas, Anastasios
    Gudmundsson, Gylfi Thor
    Heller, Silvan
    Jonsson, Bjorn Thor
    Lokoc, Jakub
    Messina, Nicola
    Pantelidis, Nick
    Wu, Jiaxin
    PROCEEDINGS OF THE 2023 ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL, ICMR 2023, 2023, : 597 - 601