Mn2+-Doped MoS2/MXene Heterostructure Composites as Cathodes for Aqueous Zinc-Ion Batteries

被引:21
|
作者
Yang, Wenjing [1 ]
Mou, Lianshan [1 ]
Xiao, Baoquan [1 ]
Chen, Jie [1 ]
Wang, Di [1 ,2 ]
Peng, Shanglong [1 ]
Huang, Juanjuan [1 ]
机构
[1] Lanzhou Univ, Sch Mat & Energy, Natl & Local Joint Engn Lab Opt Convers Mat & Tech, Lanzhou 730000, Peoples R China
[2] Shihezi Univ, Coll Sci, Shihezi 832003, Xinjiang, Peoples R China
关键词
aqueous zinc-ion battery; molybdenum disulfide; heterostructure; Mn2+ doping; MXene; MOS2; NANOSHEETS; 1T-MOS2; ANODE; INTERCALATION; INTERLAYER;
D O I
10.1021/acsami.3c12494
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Typical layered transition-metal chalcogenide materials, especially MoS2, are gradually attracting widespread attention as aqueous Zn-ion battery (AZIB) cathode materials by virtue of their two-dimensional structure, tunable band gap, and abundant edges. The metastable phase 1T-MoS2 exhibits better electrical conductivity, electrochemical activity, and zinc storage capacity compared to the thermodynamically stable 2H-MoS2. However, 1T-MoS2 is still limited by the phase stability and layered structure destruction for AZIB application. Thus, a three-dimensional interconnected network heterostructure (Mn-MoS2/MXene) consisting of Mn2+-doped MoS2 and MXene with a high percentage of 1T phase (82.9%) was synthesized by hydrothermal methods and investigated as the cathode for AZIBs. It was found that S-Mn-S covalent bonds between MoS2 interlayers and Ti-O-Mo bonds at heterogeneous interfaces can act as "electron bridges" to facilitate electron and charge transfer. And the doping of Mn2+ and the combination of MXene not only expanded the interlayer spacing of MoS2 but also maintained the metastable structure of 1T-MoS2 nanosheets, acting to reduce the activation energy for Zn2+ intercalation and enhance specific capacity. The obtained Mn-MoS2/MXene contains more 1T-MoS2 and provides an improved specific capacity of 191.7 mAh g(-1) at 0.1 A g(-1). Compared with Mn-MoS2 and pure MoS2, it also exhibits enhanced cycling stability with a capacity retention of 80.3% after 500 cycles at 1 A g(-1). Besides, the conductivity of Mn-MoS2/MXene is significantly improved, which induces a lower activation energy of the zinc ions during intercalation/deintercalation.
引用
收藏
页码:51231 / 51240
页数:10
相关论文
共 50 条
  • [21] Fe doping 1T phase MoS2 with enhanced zinc-ion storage ability and durability for high-performance aqueous zinc-ion batteries
    Liu, Jing-Yi
    Zhe, Rong-Jie
    Peng, Zhan-Hong
    Song, Yi-Hui
    Yang, Lin-Xuan
    Qing, Chen
    Guo, Jun-Ling
    Liu, Jin-Ping
    RARE METALS, 2025, 44 (01) : 253 - 263
  • [22] Structural Engineering of Vanadium Oxide Cathodes by Mn2+ Preintercalation for High-Performance Aqueous Zinc-Ion Batteries
    Li, Fengfeng
    Sheng, Hongwei
    Ma, Hongyun
    Qi, Yifeng
    Shao, Mingjiao
    Yuan, Jiao
    Li, Wenquan
    Lan, Wei
    ACS APPLIED ENERGY MATERIALS, 2023, 6 (11) : 6201 - 6213
  • [23] MoS2/ReS2 Hollow Heterojunction for Enhanced Aqueous Zinc-Ion Storage Performance
    Xu, Jing
    Li, Yujin
    Wang, Tian
    Dong, Zhong
    Jin, Ruoxin
    Guo, Kexin
    Lin, Xi
    Huang, Ke-Jing
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (18) : 23734 - 23741
  • [24] MnO2Heterostructure on Carbon Nanotubes as Cathode Material for Aqueous Zinc-Ion Batteries
    Khamsanga, Sonti
    Nguyen, Mai Thanh
    Yonezawa, Tetsu
    Thamyongkit, Patchanita
    Pornprasertsuk, Rojana
    Pattananuwat, Prasit
    Tuantranont, Adisorn
    Siwamogsatham, Siwaruk
    Kheawhom, Soorathep
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (13)
  • [25] Using MXene as a Chemically Induced Initiator to Construct High-Performance Cathodes for Aqueous Zinc-Ion Batteries
    Chen, Jie
    Liu, Yanpeng
    Xiao, Baoquan
    Huang, Juanjuan
    Chen, Hongwei
    Zhu, Kun
    Zhang, Junkai
    Cao, Guozhong
    He, Guanjie
    Ma, Jing
    Peng, Shanglong
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (35)
  • [26] Advances of Metal Oxide Composite Cathodes for Aqueous Zinc-Ion Batteries
    Kumankuma-Sarpong, James
    Guo, Wei
    Fu, Yongzhu
    ADVANCED ENERGY AND SUSTAINABILITY RESEARCH, 2022, 3 (06):
  • [27] Recent Progresses on Vanadium Sulfide Cathodes for Aqueous Zinc-Ion Batteries
    Hu, Enze
    Li, Huifang
    Zhang, Yizhou
    Wang, Xiaojun
    Liu, Zhiming
    ENERGIES, 2023, 16 (02)
  • [28] Defected vanadium bronzes as superb cathodes in aqueous zinc-ion batteries
    Li, Jianwei
    Luo, Ningjing
    Wan, Feng
    Zhao, Siyu
    Li, Zhuangnan
    Li, Wenyao
    Guo, Jian
    Shearing, Paul R.
    Brett, Dan J. L.
    Carmalt, Claire J.
    Chai, Guoliang
    He, Guanjie
    Parkin, Ivan P.
    NANOSCALE, 2020, 12 (40) : 20638 - 20648
  • [29] Material Design and Energy Storage Mechanism of Mn-Based Cathodes for Aqueous Zinc-Ion Batteries
    Xie, Shiyin
    Li, Xu
    Li, Yang
    Liang, Qinghua
    Dong, Liubing
    CHEMICAL RECORD, 2022, 22 (10):
  • [30] Hollow VO2 microspheres anchored on graphene as advanced cathodes for aqueous zinc-ion batteries
    Li, Yangjie
    Liao, Xiangyue
    Xie, Bin
    Li, Yuanxia
    Zheng, Qiaoji
    Lin, Dunmin
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2024, 662 : 404 - 412