Calibration in the "real world" of a partially specified stochastic volatility model

被引:0
|
作者
Fatone, Lorella [1 ]
Mariani, Francesca [2 ,4 ]
Zirilli, Francesco [3 ]
机构
[1] Univ Camerino, Dipartimento Matemat, Camerino, MC, Italy
[2] Univ Politecn Marche, Dipartimento Sci Econom & Sociali, Ancona, AN, Italy
[3] Univ Roma La Sapienza, Dipartimento Matemat G Castelnuovo, Rome, RM, Italy
[4] Univ Politecn Marche, Dipartimento Sci Econom & Sociali, Piazzale Martelli 8, I-60121 Ancona, AN, Italy
关键词
calibration; optimal control; stochastic volatility models; STOCK RETURNS; LEVERAGE; ASSET;
D O I
10.1002/fut.22461
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
We study the "real-world" calibration of a partially specified stochastic volatility model, where the analytic expressions of the asset price drift rate and of the stochastic variance drift are not specified. The model is calibrated matching the observed asset log returns and the priors assigned by the investor. No option price data are used in the calibration. The priors chosen for the asset price drift rate and for the stochastic variance drift are those suggested by the Heston model. For this reason, the model presented can be considered as an "enhanced" Heston model. The calibration problem is formulated as a stochastic optimal control problem and solved using the dynamic programming principle. The model presented and the Heston model are calibrated using synthetic and Standard & Poor 500 (S&P500) data. The calibrated models are used to produce 6, 12, and 24 months in the future synthetic and S&P500 forecasts.
引用
收藏
页码:75 / 102
页数:28
相关论文
共 50 条
  • [31] The α-hypergeometric stochastic volatility model
    Da Fonseca, Jose
    Martini, Claude
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2016, 126 (05) : 1472 - 1502
  • [32] A semiparametric stochastic volatility model
    Yu, Jun
    JOURNAL OF ECONOMETRICS, 2012, 167 (02) : 473 - 482
  • [33] The Jacobi stochastic volatility model
    Damien Ackerer
    Damir Filipović
    Sergio Pulido
    Finance and Stochastics, 2018, 22 : 667 - 700
  • [34] Estimation of Partially Specified Spatial Autoregressive Model
    Yuanqing ZHANG
    Journal of Systems Science and Information, 2014, 2 (03) : 226 - 235
  • [35] Optimal Volatility Dependent Derivatives in the Stochastic Volatility Model
    Dyachenko, Artem
    Rieger, Marc Oliver
    JOURNAL OF DERIVATIVES, 2021, 28 (04): : 24 - 44
  • [36] Estimation of the volatility diffusion coefficient for a stochastic volatility model
    Gloter, A
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (03): : 243 - 248
  • [37] Real time estimation of stochastic volatility processes
    László Gerencsér
    Zsanett Orlovits
    Annals of Operations Research, 2012, 200 : 223 - 246
  • [38] Real time estimation of stochastic volatility processes
    Gerencser, Laszlo
    Orlovits, Zsanett
    ANNALS OF OPERATIONS RESEARCH, 2012, 200 (01) : 223 - 246
  • [39] On the calibration of fractional two-factor stochastic volatility model with non-Lipschitz diffusions
    Mehrdoust, Farshid
    Fallah, Somayeh
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (11) : 6332 - 6351
  • [40] AN EXPLICITLY SOLVABLE MULTI-SCALE STOCHASTIC VOLATILITY MODEL: OPTION PRICING AND CALIBRATION PROBLEMS
    Fatone, Lorella
    Mariani, Francesca
    Recchioni, Maria Cristina
    Zirilli, Francesco
    JOURNAL OF FUTURES MARKETS, 2009, 29 (09) : 862 - 893