Transferring From Textual Entailment to Biomedical Named Entity Recognition

被引:1
|
作者
Liang, Tingting [1 ]
Xia, Congying [2 ]
Zhao, Ziqiang [1 ]
Jiang, Yixuan [1 ]
Yin, Yuyu [1 ]
Yu, Philip S. [3 ]
机构
[1] Hangzhou Dianzi Univ, Sch Comp Sci & Technol, Hangzhou 310018, Peoples R China
[2] Salesforce Res, Palo Alto, CA 94301 USA
[3] Univ Illinois, Dept Comp Sci, Chicago, IL 60607 USA
基金
中国国家自然科学基金;
关键词
Index Terms-Biomedical named entity recognition; contrastive learning; textual entailment; transfer learning;
D O I
10.1109/TCBB.2023.3236477
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Biomedical Named Entity Recognition (BioNER) aims at identifying biomedical entities such as genes, proteins, diseases, and chemical compounds in the given textual data. However, due to the issues of ethics, privacy, and high specialization of biomedical data, BioNER suffers from the more severe problem of lacking in quality labeled data than the general domain especially for the token-level. Facing the extremely limited labeled biomedical data, this work studies the problem of gazetteer-based BioNER, which aims at building a BioNER system from scratch. It needs to identify the entities in the given sentences when we have zero token-level annotations for training. Previous works usually use sequential labeling models to solve the NER or BioNER task and obtain weakly labeled data from gazetteers when we don't have full annotations. However, these labeled data are quite noisy since we need the labels for each token and the entity coverage of the gazetteers is limited. Here we propose to formulate the BioNER task as a Textual Entailment problem and solve the task via Textual Entailment with Dynamic Contrastive learning (TEDC). TEDC not only alleviates the noisy labeling issue, but also transfers the knowledge from pre-trained textual entailment models. Additionally, the dynamic contrastive learning framework contrasts the entities and non-entities in the same sentence and improves the model's discrimination ability. Experiments on two real-world biomedical datasets show that TEDC can achieve state-of-the-art performance for gazetteer-based BioNER.
引用
收藏
页码:2577 / 2586
页数:10
相关论文
共 50 条
  • [21] Various criteria in the evaluation of biomedical named entity recognition
    Tsai, RTH
    Wu, SH
    Chou, WC
    Lin, YC
    He, D
    Hsiang, J
    Sung, TY
    Hsu, WL
    BMC BIOINFORMATICS, 2006, 7 (1) : 1 - 8
  • [22] Multiobjective Optimization for Biomedical Named Entity Recognition and Classification
    Ekbal, Asif
    Saha, Sriparna
    Sikdar, Utpal Kumar
    2ND INTERNATIONAL CONFERENCE ON COMMUNICATION, COMPUTING & SECURITY [ICCCS-2012], 2012, 1 : 206 - 213
  • [23] Various criteria in the evaluation of biomedical named entity recognition
    Richard Tzong-Han Tsai
    Shih-Hung Wu
    Wen-Chi Chou
    Yu-Chun Lin
    Ding He
    Jieh Hsiang
    Ting-Yi Sung
    Wen-Lian Hsu
    BMC Bioinformatics, 7
  • [24] Improving biomedical named entity recognition with syntactic information
    Yuanhe Tian
    Wang Shen
    Yan Song
    Fei Xia
    Min He
    Kenli Li
    BMC Bioinformatics, 21
  • [25] Classifier subset selection for biomedical named entity recognition
    Dimililer, Nazife
    Varoglu, Ekrem
    Altincay, Hakan
    APPLIED INTELLIGENCE, 2009, 31 (03) : 267 - 282
  • [26] MMBERT: a unified framework for biomedical named entity recognition
    Fu, Lei
    Weng, Zuquan
    Zhang, Jiheng
    Xie, Haihe
    Cao, Yiqing
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2024, 62 (01) : 327 - 341
  • [27] Accurate Clinical and Biomedical Named Entity Recognition at Scale
    Kocaman, Veysel
    Talby, David
    SOFTWARE IMPACTS, 2022, 13
  • [28] Classifier subset selection for biomedical named entity recognition
    Nazife Dimililer
    Ekrem Varoğlu
    Hakan Altınçay
    Applied Intelligence, 2009, 31 : 267 - 282
  • [29] Comparison of named entity recognition methodologies in biomedical documents
    Hye-Jeong Song
    Byeong-Cheol Jo
    Chan-Young Park
    Jong-Dae Kim
    Yu-Seop Kim
    BioMedical Engineering OnLine, 17
  • [30] Towards reliable named entity recognition in the biomedical domain
    Giorgi, John M.
    Bader, Gary D.
    BIOINFORMATICS, 2020, 36 (01) : 280 - 286