Uncertainty principles of hypercomplex functions for fractional Fourier transform

被引:1
|
作者
Gao, Wen-Biao [1 ]
机构
[1] Yangzhou Univ, Sch Math Sci, Yangzhou 225002, Jiangsu, Peoples R China
关键词
Fourier transform; Fractional Fourier transform; Hypercomplex functions; Uncertainty principle;
D O I
10.1007/s13540-023-00191-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper, different uncertainty principles for hypercomplex functions associated with the fractional Fourier transform (FRFT) are investigated. First, the inverse formula and Plancherel theorem of the FRFT are obtained. Then, a new uncertainty principle for the FRFT of hypercomplex functions in the time and FRFT domains is explored. Moreover, an uncertainty principle in two FRFT domains is obtained. Finally, examples show the correctness of the theorems.
引用
收藏
页码:2298 / 2317
页数:20
相关论文
共 50 条
  • [21] The logarithmic, Heisenberg's and short-time uncertainty principles associated with fractional Fourier transform
    Xu Guanlei
    Wang Xiaotong
    Xu Xiaogang
    SIGNAL PROCESSING, 2009, 89 (03) : 339 - 343
  • [22] Lp-type Heisenberg-Pauli-Weyl uncertainty principles for fractional Fourier transform
    Chen, Xuan
    Dang, Pei
    Mai, Weixiong
    Applied Mathematics and Computation, 2025, 491
  • [23] Fractional Fourier transforms of hypercomplex signals
    Hendrik De Bie
    Nele De Schepper
    Signal, Image and Video Processing, 2012, 6 : 381 - 388
  • [24] Fractional Fourier transforms of hypercomplex signals
    De Bie, Hendrik
    De Schepper, Nele
    SIGNAL IMAGE AND VIDEO PROCESSING, 2012, 6 (03) : 381 - 388
  • [25] Novel uncertainty relations associated with fractional Fourier transform
    徐冠雷
    王孝通
    徐晓刚
    Chinese Physics B, 2010, 19 (01) : 294 - 302
  • [26] On the class of uncertainty inequalities for the coupled fractional Fourier transform
    Shah, Firdous A.
    Lone, Waseem Z.
    Nisar, Kottakkaran Sooppy
    Abdeljawad, Thabet
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2022, 2022 (01)
  • [27] On uncertainty principle for signal concentrations with fractional Fourier transform
    Shi, Jun
    Liu, Xiaoping
    Zhang, Naitong
    SIGNAL PROCESSING, 2012, 92 (12) : 2830 - 2836
  • [28] Novel uncertainty relations associated with fractional Fourier transform
    Xu Guan-Lei
    Wang Xiao-Tong
    Xu Xiao-Gang
    CHINESE PHYSICS B, 2010, 19 (01)
  • [29] A Simple Observation on the Uncertainty Principle for the Fractional Fourier Transform
    Philippe Jaming
    Journal of Fourier Analysis and Applications, 2022, 28
  • [30] A Simple Observation on the Uncertainty Principle for the Fractional Fourier Transform
    Jaming, Philippe
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2022, 28 (03)