Adipic acid is an industrially important chemical, but the current approach to synthesize it can be of serious pollution to the environment. Rencently, bio-based production of adipic acid has significantly advanced with the development of metabolic engineering and synthetic biology. However, genetic heterogeneity-caused decrease of product titer has largely limited the industrialization of chemicals like adipic acid. Therefore, in the attempt to overcome this challenge, we constitutively expressed the reverse adipate degradation pathway, designed and optimized an adipic acid biosensor, and established a high-throughput screening platform to screen for high-performance strains based on the optimized biosensor. Using this platform, we successfully screened a strain with an adipic acid titer of 188.08 mgGreek ano teleiaL(-1). Coupling the screening platform with fermentation optimization, the titer of adipic acid reached 531.88 mgGreek ano teleiaL(-1) under shake flask fermentation, which achieved an 18.78-fold improvement comparing to the initial strain. Scale-up fermentation in a 5-L fermenter utilizing the screened high-performance strain was eventually conducted, in which the adipic acid titer reached 3.62 gGreek ano teleiaL(-1). Overall, strategies developed in this study proved to be a potentially efficient method in reducing the genetic heterogeneity and was expected to provide guidance in helping to build a more efficient industrial screening process.