Waterproof, Breathable, and UV-Protective Nanofiber-Based Triboelectric Nanogenerator for Self-Powered Sensors

被引:28
|
作者
Sun, Na [1 ]
Zhang, Xiao-Nan [1 ]
Li, Jia-Ze [1 ]
Cai, Ya-Wei [1 ]
Wei, Zhan [1 ]
Ding, Ling [1 ]
Wang, Gui-Gen [1 ,2 ,3 ]
机构
[1] Harbin Inst Technol Shenzhen, Sch Mat Sci & Engn, Shenzhen Key Lab Adv Mat, Shenzhen 518055, Peoples R China
[2] Harbin Inst Technol Shenzhen, Guangdong Prov Key Lab Semicond Optoelect Mat & I, Shenzhen 518055, Peoples R China
[3] Harbin Inst Technol, Natl Key Lab Sci & Technol Adv Composites Special, Harbin 150080, Peoples R China
基金
中国国家自然科学基金;
关键词
PDMS; PVDF; nanofiber film; triboelectric nanogenerator; self-powered sensor; MEMBRANE;
D O I
10.1021/acssuschemeng.2c07643
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Nanofiber-based triboelectric nanogenerators (TENGs) have garnered increasing attention as the multifunctional power source in wearable electronics. However, most traditional wearable device-based TENGs are unable to simultaneously achieve excellent outputs and multifunctional properties. Here, we design a waterproof, breathable, UV-protective TENG based on a poly(vinylidene fluoride) (PVDF)/ poly(dimethylsiloxane) (PDMS)/TiO2 nanofiber film for effective harvesting mechanical energy by a simple and low-cost combined electrospinning/electrospray method. The introduction of PVDF can overcome the synthesis puzzle of PDMS nanofibers during the electrospinning process. With numerous three-dimensional micro-to-nano hierarchical pores of a nanofiber network, the constructed TENG can furnish large specific surface area and good breathability. The addition of TiO2 nanoparticles (NPs) increases the dielectric constant and surface roughness of the PVDF/PDMS/TiO2 nanofiber film as well as the corresponding output performance of the nanofiber-based TENG. The as-presented TENG has a maximum peak power density of 0.72 W/m2 and excellent breathability (18.6 mm/s). Due to the UV radiation absorbed by the TiO2 NPs, the UVA transmittance (TUVA) of the TENG with 4% TiO2 NPs is decreased to only 8.2%. The constructed TENG can be integrated to monitor human physiological signals in a self-powered manner. The nanofiber-based TENG provides a version to render these suitable for the daily-used wearable or portable electronics shortly.
引用
收藏
页码:5608 / 5616
页数:9
相关论文
共 50 条
  • [41] Self-Powered Intelligent door handle based on Triboelectric Nanogenerator
    Deng, Yiping
    Liao, Lu
    Wu, Ying
    Hu, Gang
    Bai, Junjie
    Zhai, Yuan
    Zhu, Guang
    2017 IEEE 16TH INTERNATIONAL CONFERENCE ON COGNITIVE INFORMATICS & COGNITIVE COMPUTING (ICCI*CC), 2017, : 465 - 469
  • [42] Triboelectric nanogenerator based self-powered sensor for artificial intelligence
    Zhou, Yuankai
    Shen, Maoliang
    Cui, Xin
    Shao, Yicheng
    Li, Lijie
    Zhang, Yan
    NANO ENERGY, 2021, 84
  • [43] Sodium-Alginate Composite Nanofiber-Based Triboelectric Sensor for Self-Powered Wrist Posture Identification
    Hong, Keke
    Hao, Yijun
    Yang, Jiayi
    Yang, Jin
    Su, Jiayu
    Su, Wei
    Zhang, Hongke
    Qin, Yong
    Zhang, Chuguo
    Li, Xiuhan
    ACS APPLIED ELECTRONIC MATERIALS, 2024, 6 (12) : 9071 - 9081
  • [44] Waterproof Fabric-Based Multifunctional Triboelectric Nanogenerator for Universally Harvesting Energy from Raindrops, Wind, and Human Motions and as Self-Powered Sensors
    Lai, Ying-Chih
    Hsiao, Yung-Chi
    Wu, Hsing-Mei
    Wang, Zhong Lin
    ADVANCED SCIENCE, 2019, 6 (05)
  • [45] Continuously fabricated nano/micro aligned fiber based waterproof and breathable fabric triboelectric nanogenerators for self-powered sensing systems
    Zhou, Mengjuan
    Xu, Fan
    Ma, Liyun
    Luo, Qingliang
    Ma, Wanwan
    Wang, Rongwu
    Lan, Chuntao
    Pu, Xiong
    Qin, Xiaohong
    NANO ENERGY, 2022, 104
  • [46] Self-Powered Respiration Monitoring Enabled By a Triboelectric Nanogenerator
    Su, Yuanjie
    Chen, Guorui
    Chen, Chunxu
    Gong, Qichen
    Xie, Guangzhong
    Yao, Mingliang
    Tai, Huiling
    Jiang, Yadong
    Chen, Jun
    ADVANCED MATERIALS, 2021, 33 (35)
  • [47] Self-Powered Electrostatic Adsorption Face Mask Based on a Triboelectric Nanogenerator
    Liu, Guoxu
    Nie, Jinhui
    Han, Changbao
    Jiang, Tao
    Yang, Zhiwei
    Pang, Yaokun
    Xu, Liang
    Guo, Tong
    Bu, Tianzhao
    Zhang, Chi
    Wang, Zhong Lin
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (08) : 7126 - 7133
  • [48] Advances in Marine Self-Powered Vibration Sensor Based on Triboelectric Nanogenerator
    Zou, Yongjiu
    Sun, Minzheng
    Xu, Weipeng
    Zhao, Xin
    Du, Taili
    Sun, Peiting
    Xu, Minyi
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2022, 10 (10)
  • [49] Self-powered silicon PIN neutron detector based on triboelectric nanogenerator
    Zhu, Zhiyuan
    Li, Bao
    Zhao, En
    Yu, Min
    NANO ENERGY, 2022, 102
  • [50] A Self-Powered Lantern Based on a Triboelectric-Photovoltaic Hybrid Nanogenerator
    Cao, Ran
    Wang, Jiaona
    Xing, Yi
    Song, Weixing
    Li, Nianwu
    Zhao, Shuyu
    Zhang, Chi
    Li, Congju
    ADVANCED MATERIALS TECHNOLOGIES, 2018, 3 (04):