An improved fixture for better measuring the displacements and mode-I fracture toughness of chevron bend specimens

被引:0
|
作者
Cui, Zhendong [1 ,2 ,3 ,5 ,6 ]
Wei, Tao [1 ,2 ,3 ]
Zhao, Leilei [4 ]
Si, Kai [4 ]
机构
[1] Chinese Acad Sci, Inst Geol & Geophys, Key Lab Shale Gas & Geoengn, Beijing, Peoples R China
[2] Chinese Acad Sci, Innovat Acad Earth Sci, Beijing, Peoples R China
[3] Univ Chinese Acad Sci, Coll Earth & Planetary Sci, Beijing, Peoples R China
[4] China Univ Min & Technol Beijing, Dept Sch Mech & Civil Engn, Beijing, Peoples R China
[5] Chinese Acad Sci, Inst Geol & Geophys, Key Lab Shale Gas & Geoengn, Beijing 100029, Peoples R China
[6] Univ Chinese Acad Sci, Innovat Acad Earth Sci, CAS, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
chevron bend specimen; crack mouth opening displacement (CMOD); load point displacement (LPD); mode-I fracture toughness; nonlinearity correction; STRESS INTENSITY FACTORS; EXPERIMENTAL CALIBRATION; ROCK;
D O I
10.1111/ffe.13995
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The load versus load point displacement (LPD) curve is significant for the nonlinearity corrections for the mode-I fracture toughness of chevron bend (CB) specimens. The testing fixture plays a crucial role in measuring load versus LPD curves. To better measure the LPDs of CB specimens, we developed an improved fixture system consisting of an understructure and a yoke based on the traditional saddle arrangement fixture suggested by ISRM. With the aid of the improved fixture, continuous synchronized LPDs and CMODs are measured, and nonlinearity corrections are conducted. After nonlinearity corrections, the data of mode-I fracture toughness become more comparable and present a better regularity among different specimen diameters and variant rock types. Repeated tests verify that the improved fixture has the advantages of higher stability and more convenient installation, removal, and adjustment, which can enhance the testing robustness and efficiency.
引用
收藏
页码:2244 / 2257
页数:14
相关论文
共 50 条
  • [21] FIBER BRIDGING IN DOUBLE CANTILEVER BEAM SPECIMENS AND ITS EFFECT ON MODE-I INTERLAMINAR FRACTURE-TOUGHNESS
    YE, L
    FRIEDRICH, K
    JOURNAL OF MATERIALS SCIENCE LETTERS, 1992, 11 (22) : 1537 - 1539
  • [22] PVC SANDWICH CORE MATERIALS - MODE-I FRACTURE-TOUGHNESS
    ZENKERT, D
    BACKLUND, J
    COMPOSITES SCIENCE AND TECHNOLOGY, 1989, 34 (03) : 225 - 242
  • [23] Effect of T-stress on the mode-I fracture toughness of concrete
    Zhao, Yan-hua
    Xu, Bo-han
    COMPTES RENDUS MECANIQUE, 2014, 342 (08): : 490 - 500
  • [24] A review on mode-I interlaminar fracture toughness of fibre reinforced composites
    Nasuha, N.
    Azmi, A. I.
    Tan, C. L.
    INTERNATIONAL CONFERENCE ON APPLICATIONS AND DESIGN IN MECHANICAL ENGINEERING (ICADME 2017), 2017, 908
  • [25] Correlating the Mechanical and Physical Properties with Mode-I Fracture Toughness of Rocks
    Roy, Debanjan Guha
    Singh, T. N.
    Kodikara, J.
    Talukdar, Mayukh
    ROCK MECHANICS AND ROCK ENGINEERING, 2017, 50 (07) : 1941 - 1946
  • [26] Splitting Mode-I fracture toughness of carbon fibers using nanoindentation
    Chawla, Vivek
    Puplampu, Stephen Beute
    Hopper, William
    Penumadu, Dayakar
    CARBON, 2024, 219
  • [27] Mode-I fracture toughness measurement of PMMA with the Brazilian disk test
    Jun Zhou
    Yang Wang
    Yuanming Xia
    Journal of Materials Science, 2006, 41 : 5778 - 5781
  • [29] Mode-I dynamic fracture initiation toughness using torsion load
    Fahem, Ali
    Kidane, Addis
    Sutton, Michael A.
    ENGINEERING FRACTURE MECHANICS, 2019, 213 : 53 - 71
  • [30] Mode-I fracture toughness measurement of PMMA with the Brazilian disk test
    Zhou, Jun
    Wang, Yang
    Xia, Yuanming
    JOURNAL OF MATERIALS SCIENCE, 2006, 41 (17) : 5778 - 5781