MetaboDirect: an analytical pipeline for the processing of FT-ICR MS-based metabolomic data

被引:16
|
作者
Ayala-Ortiz, Christian [1 ]
Graf-Grachet, Nathalia [1 ,2 ]
Freire-Zapata, Viviana [1 ]
Fudyma, Jane [1 ,3 ]
Hildebrand, Gina [1 ]
AminiTabrizi, Roya [1 ,4 ]
Howard-Varona, Cristina [5 ,6 ]
Corilo, Yuri E. [7 ]
Hess, Nancy [3 ]
Duhaime, Melissa B. [8 ]
Sullivan, Matthew B. [5 ,6 ,9 ]
Tfaily, Malak M. [1 ,7 ]
机构
[1] Univ Arizona, Dept Environm, Sci, Tucson, AZ 85721 USA
[2] Roche, Pleasanton, CA 94588 USA
[3] Univ Calif Davis, Dept Plant Pathol, Davis, CA 95616 USA
[4] Univ Chicago Biol Sci Div, Metabol Platform, Chicago, IL 60637 USA
[5] Ohio State Univ, Dept Microbiol, Columbus, OH 43210 USA
[6] Ohio State Univ, Ctr Microbiome Sci, Columbus, OH 43210 USA
[7] Pacific Northwest Natl Lab, Environm Mol Sci Lab, Richland, WA 99354 USA
[8] Univ Michigan, Dept Ecol & Evolutionary Biol, Ann Arbor, MI 48109 USA
[9] Ohio State Univ, Dept Civil Environm & Geodet Engn, Columbus, OH 43210 USA
关键词
Metabolites; Organic matter; FT-ICR MS; Biochemical networks; DISSOLVED ORGANIC-MATTER; MASS-SPECTROMETRY; MOLECULAR CHARACTERIZATION; ELECTROSPRAY-IONIZATION; NORMALIZATION; DIVERSITY; VISUALIZATION; SOFTWARE; SPECTRA; INDEX;
D O I
10.1186/s40168-023-01476-3
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Background Microbiomes are now recognized as the main drivers of ecosystem function ranging from the oceans and soils to humans and bioreactors. However, a grand challenge in microbiome science is to characterize and quantify the chemical currencies of organic matter (i.e., metabolites) that microbes respond to and alter. Critical to this has been the development of Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), which has drastically increased molecular characterization of complex organic matter samples, but challenges users with hundreds of millions of data points where readily available, user-friendly, and customizable software tools are lacking. Results Here, we build on years of analytical experience with diverse sample types to develop MetaboDirect, an open-source, command-line-based pipeline for the analysis (e.g., chemodiversity analysis, multivariate statistics), visualization (e.g., Van Krevelen diagrams, elemental and molecular class composition plots), and presentation of direct injection high-resolution FT-ICR MS data sets after molecular formula assignment has been performed. When compared to other available FT-ICR MS software, MetaboDirect is superior in that it requires a single line of code to launch a fully automated framework for the generation and visualization of a wide range of plots, with minimal coding experience required. Among the tools evaluated, MetaboDirect is also uniquely able to automatically generate biochemical transformation networks (ab initio) based on mass differences (mass difference network-based approach) that provide an experimental assessment of metabolite connections within a given sample or a complex metabolic system, thereby providing important information about the nature of the samples and the set of microbial reactions or pathways that gave rise to them. Finally, for more experienced users, MetaboDirect allows users to customize plots, outputs, and analyses. Conclusion Application of MetaboDirect to FT-ICR MS-based metabolomic data sets from a marine phage-bacterial infection experiment and a Sphagnum leachate microbiome incubation experiment showcase the exploration capabilities of the pipeline that will enable the research community to evaluate and interpret their data in greater depth and in less time. It will further advance our knowledge of how microbial communities influence and are influenced by the chemical makeup of the surrounding system.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Quantitative enantiomeric analysis of drugs via FT-ICR MS.
    Grigorean, G
    Lebrilla, CB
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2000, 220 : U94 - U94
  • [32] Detailed heteroatom speciation in petroleum by high resolution FT-ICR MS
    Rodgers, Ryan P.
    Juyal, Priyanka
    McKenna, Amy M.
    Marshall, Alan G.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2009, 237
  • [33] Clarification of metabolic disorders and identification of marker metabolites by FT-ICR MS
    Oikawa, A
    Ogura, T
    Kimura, A
    Nakamura, Y
    Sakurai, N
    Suzuki, H
    Saito, K
    Shibata, D
    Kanaya, S
    Ohta, D
    PLANT AND CELL PHYSIOLOGY, 2006, 47 : S246 - S246
  • [34] New practical biodegradation proxies based on heteroatom compounds revealed by ESI (-) FT-ICR MS
    Deng, Shuo
    Li, Sumei
    Li, Xiaoyan
    ORGANIC GEOCHEMISTRY, 2024, 194
  • [35] Parallel processing on an FT-ICR mass spectrometer -: The ideal tool for proteomics
    Muenster, Helmut
    Strupat, Kerstin
    Chow, Ying
    Liu, Charles
    MOLECULAR & CELLULAR PROTEOMICS, 2004, 3 (10) : S136 - S136
  • [36] ACSAICHE 99009-Ionization reagents for enhanced speciation of petroleum compound classes by Electrospray Ionization FT-ICR Mass Spectrometry (ESI FT-ICR MS)
    Juyal, Priyanka
    Rodgers, Ryan P.
    Marshall, Alan G.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2008, 235
  • [37] Application of FT-ICR MS Equipped with Quadrupole Detection for Analysis of Crude Oil
    Cho, Eunji
    Witt, Matthias
    Hur, Manhoi
    Jung, Maeng-Joon
    Kim, Sunghwan
    ANALYTICAL CHEMISTRY, 2017, 89 (22) : 12101 - 12107
  • [38] Monitoring the liquid/liquid extraction of naphthenic acids in brazilian crude oil using electrospray ionization FT-ICR mass spectrometry (ESI FT-ICR MS)
    Colati, Keroly A. P.
    Dalmaschio, Guilherme P.
    de Castro, Eustaquio V. R.
    Gomes, Alexandre O.
    Vaz, Boniek G.
    Romao, Wanderson
    FUEL, 2013, 108 : 647 - 655
  • [39] Autophaser: An Algorithm for Automated Generation of Absorption Mode Spectra for FT-ICR MS
    Kilgour, David P. A.
    Wills, Rebecca
    Qi, Yulin
    O'Connor, Peter B.
    ANALYTICAL CHEMISTRY, 2013, 85 (08) : 3903 - 3911
  • [40] Determination of Unknown Compound in Aromatics by FT-ICR MS with Various Ionization Techniques
    ZHANG Yahe
    LU Hong
    REN Limin
    SHI Quan
    XU Chunming
    GUO Shaohui
    Acta Geologica Sinica(English Edition), 2015, (S1) : 439 - 439