Phenotyping senescent mesenchymal stromal cells using AI image translation

被引:8
|
作者
Weber, Leya [1 ]
Lee, Brandon S. [2 ]
Imboden, Sara [1 ]
Hsieh, Cho-Jui [3 ]
Lin, Neil Y. C. [1 ,2 ,4 ,5 ,6 ,7 ]
机构
[1] Univ Calif Los Angeles, Dept Mech & Aerosp Engn, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Dept Bioengn, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Dept Comp Sci, Los Angeles, CA 90095 USA
[4] Univ Calif Los Angeles, Calif NanoSyst Inst, Los Angeles, CA 90095 USA
[5] Univ Calif Los Angeles, Jonsson Comprehens Canc Ctr, Los Angeles, CA 90095 USA
[6] Univ Calif Los Angeles, Inst Quantitat & Computat Biosci, Los Angeles, CA 90095 USA
[7] Univ Calif Los Angeles, Broad Stem Cell Ctr, Los Angeles, CA 90095 USA
关键词
MSC phenotyping; Senescence; AI image translation; Cell manufacturing; HUMAN BONE-MARROW; STEM-CELLS; CELLULAR SENESCENCE; ADIPOSE; CANCER; BLOOD;
D O I
10.1016/j.crbiot.2023.100120
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Mesenchymal stromal cells (MSCs) offer promising potential in biomedical research, clinical therapeutics, and immunomodulatory therapies due to their ease of isolation and multipotent, immunoprivileged, and immuno-suppersive properties. Extensive efforts have focused on optimizing the cell isolation and culture methods to generate scalable, therapeutically-relevant MSCs for clinical applications. However, MSC-based therapies are often hindered by cell heterogeneity and inconsistency of therapeutic function caused, in part, by MSC senes-cence. As such, noninvasive and molecular-based MSC characterizations play an essential role in assuring the consistency of MSC functions. Here, we demonstrated that AI image translation algorithms can effectively pre-dict immunofluorescence images of MSC senescence markers from phase contrast images. We showed that the expression level of senescence markers including senescence-associated beta-galactosidase (SABG), p16, p21, and p38 are accurately predicted by deep-learning models for Doxorubicin-induced MSC senescence, irradiation-induced MSC senescence, and replicative MSC senescence. Our AI model distinguished the non-senescent and senescent MSC populations and simultaneously captured the cell-to-cell variability within a pop-ulation. Our microscopy-based phenotyping platform can be integrated with cell culture routines making it an easily accessible tool for MSC engineering and manufacturing.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Stromal mesenchymal progenitor cells
    Ghilzon, R
    McCulloch, CAG
    Zohar, R
    LEUKEMIA & LYMPHOMA, 1999, 32 (3-4) : 211 - 221
  • [42] The immunobiology of mesenchymal stromal cells
    Dazzi, F.
    IMMUNOLOGY, 2014, 143 : 23 - 23
  • [43] Subsets of mesenchymal stromal cells
    McNiece, I.
    CYTOTHERAPY, 2007, 9 (03) : 301 - 302
  • [44] Reinventing mesenchymal stromal cells
    Tolar, Jakub
    Tolar, Miroslav
    CYTOTHERAPY, 2012, 14 (04) : 388 - 390
  • [45] Mesenchymal stromal cells in the thymus
    Takeshi Nitta
    Inflammation and Regeneration, 42
  • [46] Mesenchymal Stromal Cells Support Endometriotic Stromal Cells In Vitro
    Abomaray, Fawaz
    Gidlof, Sebastian
    Bezubik, Bartosz
    Engman, Mikael
    Gotherstrom, Cecilia
    STEM CELLS INTERNATIONAL, 2018, 2018
  • [47] MESENCHYMAL STEM/STROMAL CELLS
    Heyman, E.
    Devriendt, B.
    Elly, D.
    De Schauwer, C.
    CYTOTHERAPY, 2023, 25 (06) : S61 - S61
  • [48] Mesenchymal stromal cells for osteonecrosis
    Elgaz, S.
    Bonig, H.
    Bader, P.
    JOURNAL OF TRANSLATIONAL MEDICINE, 2020, 18 (01)
  • [49] Mesenchymal stromal cells for osteonecrosis
    S. Elgaz
    H. Bonig
    P. Bader
    Journal of Translational Medicine, 18
  • [50] Mesenchymal stromal cells and autoimmunity
    Pistoia, Vito
    Raffaghello, Lizzia
    INTERNATIONAL IMMUNOLOGY, 2017, 29 (02) : 49 - 58