共 50 条
Phenotyping senescent mesenchymal stromal cells using AI image translation
被引:8
|作者:
Weber, Leya
[1
]
Lee, Brandon S.
[2
]
Imboden, Sara
[1
]
Hsieh, Cho-Jui
[3
]
Lin, Neil Y. C.
[1
,2
,4
,5
,6
,7
]
机构:
[1] Univ Calif Los Angeles, Dept Mech & Aerosp Engn, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Dept Bioengn, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Dept Comp Sci, Los Angeles, CA 90095 USA
[4] Univ Calif Los Angeles, Calif NanoSyst Inst, Los Angeles, CA 90095 USA
[5] Univ Calif Los Angeles, Jonsson Comprehens Canc Ctr, Los Angeles, CA 90095 USA
[6] Univ Calif Los Angeles, Inst Quantitat & Computat Biosci, Los Angeles, CA 90095 USA
[7] Univ Calif Los Angeles, Broad Stem Cell Ctr, Los Angeles, CA 90095 USA
关键词:
MSC phenotyping;
Senescence;
AI image translation;
Cell manufacturing;
HUMAN BONE-MARROW;
STEM-CELLS;
CELLULAR SENESCENCE;
ADIPOSE;
CANCER;
BLOOD;
D O I:
10.1016/j.crbiot.2023.100120
中图分类号:
Q81 [生物工程学(生物技术)];
Q93 [微生物学];
学科分类号:
071005 ;
0836 ;
090102 ;
100705 ;
摘要:
Mesenchymal stromal cells (MSCs) offer promising potential in biomedical research, clinical therapeutics, and immunomodulatory therapies due to their ease of isolation and multipotent, immunoprivileged, and immuno-suppersive properties. Extensive efforts have focused on optimizing the cell isolation and culture methods to generate scalable, therapeutically-relevant MSCs for clinical applications. However, MSC-based therapies are often hindered by cell heterogeneity and inconsistency of therapeutic function caused, in part, by MSC senes-cence. As such, noninvasive and molecular-based MSC characterizations play an essential role in assuring the consistency of MSC functions. Here, we demonstrated that AI image translation algorithms can effectively pre-dict immunofluorescence images of MSC senescence markers from phase contrast images. We showed that the expression level of senescence markers including senescence-associated beta-galactosidase (SABG), p16, p21, and p38 are accurately predicted by deep-learning models for Doxorubicin-induced MSC senescence, irradiation-induced MSC senescence, and replicative MSC senescence. Our AI model distinguished the non-senescent and senescent MSC populations and simultaneously captured the cell-to-cell variability within a pop-ulation. Our microscopy-based phenotyping platform can be integrated with cell culture routines making it an easily accessible tool for MSC engineering and manufacturing.
引用
收藏
页数:10
相关论文