ModelicaGridData: Massive power system simulation data generation and labeling tool using Modelica and Python']Python

被引:4
|
作者
Dorado-Rojas, Sergio A. [1 ,2 ]
Fachini, Fernando [1 ]
Bogodorova, Tetiana [1 ]
Laera, Giuseppe [1 ]
Fernandes, Marcelo de Castro [1 ]
Vanfretti, Luigi [1 ]
机构
[1] Rensselaer Polytech Inst, Dept Elect Comp & Syst Engn, Troy, NY 12180 USA
[2] Univ Connecticut, Dept Elect & Comp Engn, Storrs, CT USA
关键词
Big data generation; OpenIPSL; Modelica; Power systems; Small-signal stability; Power flow;
D O I
10.1016/j.softx.2022.101258
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper describes ModelicaGridData tool that is created for massive data generation employing phasor time-domain Modelica simulations and using the Open-Instance Power System Library (OpenIPSL). ModelicaGridData provides a pipeline for generating large amounts of data, considering a wide range of operating conditions and potential contingencies experienced by a power system. The need for large-scale power system dynamic data arises with the development of Machine Learning (ML) solutions in the context of the modernization of the existing power grid. ModelicaGridData implements algorithms to process different types of input data, perform steady-state computations, run dynamic simulations and linear analysis routines, and label the resulting data sets. The tool has been developed entirely in Python 3 and is compatible with the Modelica IDEs - Dymola and OpenModelica. (c) 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Aspects of Power System Modeling, Initialization and Simulation using the Modelica Language
    Leon, Gladys
    Halat, Milenko
    Sabate, Marc
    Heyberger, Jean-Baptiste
    Gomez, Francisco Jose
    Vanfretti, Luigi
    2015 IEEE EINDHOVEN POWERTECH, 2015,
  • [32] PDB2DAT: Automating LAMMPS data file generation from PDB molecular systems using Python']Python, Rdkit, and Pysimm
    Assaf, Eli I.
    Liu, Xueyan
    Lin, Peng
    Erkens, Sandra
    SOFTWARE IMPACTS, 2024, 20
  • [33] Dependability analysis of power system protections using stochastic hybrid simulation with Modelica
    Ferrarini, Luca
    Carneiro, Juliano S. A.
    Radaelli, Simone
    Ciapessoni, Emanuele
    PROCEEDINGS OF THE 2007 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS 1-10, 2007, : 1584 - +
  • [34] Automated Parameter Identification and Calibration for the Itaipu Power Generation System using Modelica, FMI, and RaPId
    Podlaski, Meaghan
    Vanfretti, Luigi
    Pesente, Jonas
    Galassi, Paulo Henrique
    2019 7TH WORKSHOP ON MODELING AND SIMULATION OF CYBER-PHYSICAL ENERGY SYSTEMS (MSCPES), 2019,
  • [35] pyComBat, a Python tool for batch effects correction in high-throughput molecular data using empirical Bayes methods
    Abdelkader Behdenna
    Maximilien Colange
    Julien Haziza
    Aryo Gema
    Guillaume Appé
    Chloé-Agathe Azencott
    Akpéli Nordor
    BMC Bioinformatics, 24
  • [36] Simulation of SOFCs based power generation system using Aspen
    Pianko-Oprych, Paulina
    Palus, Mateusz
    POLISH JOURNAL OF CHEMICAL TECHNOLOGY, 2017, 19 (04) : 8 - 15
  • [37] Simulation data generation algorithm for the fault diagnosis system of overhead power lines
    Wu, Hua
    Liu, Chang'an
    Li, Qipeng
    Shen, Xiaoke
    Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument, 2013, 34 (06): : 1388 - 1394
  • [38] Real Time Simulation for Wind Power Generation System Using RTDS
    Wang, Ge
    Gao, Wenzhong
    2008 40TH NORTH AMERICAN POWER SYMPOSIUM (NAPS 2008), 2008, : 617 - 622
  • [39] Simulation of a Stirling Engine Solar Power Generation System Using Simulink
    Jahromi, Mehdi Zareian
    Bioki, Mohammad Mehdi Hosseini
    Fadacinedjad, Roohollah
    INTERNATIONAL AEGEAN CONFERENCE ON ELECTRICAL MACHINES AND POWER ELECTRONICS & ELECTROMOTION JOINT CONFERENCE, 2011, : 676 - 681
  • [40] Analysis of power system transient stability characteristics with the application of massive transient stability simulation data
    Yang, Haocheng
    Niu, Kunkun
    Xu, Dechao
    Xu, Shuwen
    ENERGY REPORTS, 2021, 7 : 111 - 117