A Deep Learning-Based Text Detection and Recognition Approach for Natural Scenes

被引:4
|
作者
Li, Xuexiang [1 ]
机构
[1] Zibo Vocat Inst, Coll Automobile Engn, Zibo 255314, Peoples R China
关键词
Deep learning; natural scenes; text detection; text recognition;
D O I
10.1142/S0218126623500731
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we design a natural scene text detection and recognition model based on deep learning by model construction and in-depth study of wild scene text detection and recognition. This paper proposes a scene text recognition method based on connection time classification and attention mechanism for the situation where natural scene text is challenging to recognize due to the high complexity of text and background. The method converts the text recognition problem in natural scenes into a sequence recognition problem, avoiding the drawback of overall recognition performance degradation due to the difficulty of character segmentation. At the same time, the attention mechanism introduced can reduce the network complexity and improve the recognition accuracy. The performance of the improved PSE-based text detection algorithm in this paper is tested on the curved text datasets SCUT-ctw1500 and ICDAR2017 in natural scenes for comparison. The results show that the proposed algorithm achieves 88.5%, 77%, and 81.3% in the three indexes of accuracy, recall, and Fl value, respectively, without adding the pre-training module. The algorithm can detect text in any direction well without adding the pre-training module; the improved text recognition algorithm based on CRNN in this paper is tested on the natural scene dataset ICDAR2017, and the results show that the accuracy rate reaches 94.5% under the condition of no constraint, which is a good performance.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Object detection and recognition using deep learning-based techniques
    Sharma, Preksha
    Gupta, Surbhi
    Vyas, Sonali
    Shabaz, Mohammad
    IET COMMUNICATIONS, 2023, 17 (13) : 1589 - 1599
  • [22] Arrhythmia recognition and classification through deep learning-based approach
    Zhou, Rui
    Li, Xue
    Yong, Binbin
    Shen, Zebang
    Wang, Chen
    Zhou, Qingguo
    Cao, Yunshan
    Li, Kuan-Ching
    INTERNATIONAL JOURNAL OF COMPUTATIONAL SCIENCE AND ENGINEERING, 2019, 19 (04) : 506 - 517
  • [23] Deep Learning-Based Approach for Arabic Visual Speech Recognition
    Alsulami, Nadia H.
    Jamal, Amani T.
    Elrefaei, Lamiaa A.
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 71 (01): : 85 - 108
  • [24] A Deep Learning-based Method for Turkish Text Detection from Videos
    Rasheed, Jawad
    Jamil, Akhtar
    Dogru, Hasibe Busra
    Tilki, Sahra
    Yesiltepe, Mirsat
    2019 11TH INTERNATIONAL CONFERENCE ON ELECTRICAL AND ELECTRONICS ENGINEERING (ELECO 2019), 2019, : 935 - 939
  • [25] Deep Learning-Based Document Modeling for Personality Detection from Text
    Majumder, Navonil
    Poria, Soujanya
    Gelbukh, Alexander
    Cambria, Erik
    IEEE INTELLIGENT SYSTEMS, 2017, 32 (02) : 74 - 79
  • [26] Deep Learning Approach: A New Trend in Text Detection in Natural Images
    Kumar, Deepak
    Singh, Ramandeep
    2018 4TH INTERNATIONAL CONFERENCE ON COMPUTING SCIENCES (ICCS), 2018, : 126 - 131
  • [27] A Survey of Deep Learning-Based Multimodal Emotion Recognition: Speech, Text, and Face
    Lian, Hailun
    Lu, Cheng
    Li, Sunan
    Zhao, Yan
    Tang, Chuangao
    Zong, Yuan
    ENTROPY, 2023, 25 (10)
  • [28] Deep learning-based recognition system for pashto handwritten text: benchmark on PHTI
    Hussain, Ibrar
    Ahmad, Riaz
    Ullah, Khalil
    Muhammad, Siraj
    Elhassan, Rasha
    Syed, Ikram
    PEERJ COMPUTER SCIENCE, 2024, 10
  • [29] Deep Learning-Based Approaches for Text Recognition in PCB Optical Inspection: A Survey
    Ghosh, Shajib
    Sathiaseelan, Mukhil Azhagan Mallaiyan
    Asadizanjani, Navid
    PROCEEDINGS OF THE 2021 IEEE INTERNATIONAL CONFERENCE ON PHYSICAL ASSURANCE AND INSPECTION ON ELECTRONICS (PAINE), 2021,
  • [30] Deep learning-based waste detection in natural and urban environments
    Majchrowska, Sylwia
    Mikolajczyk, Agnieszka
    Ferlin, Maria
    Klawikowska, Zuzanna
    Plantykow, Marta A.
    Kwasigroch, Arkadiusz
    Majek, Karol
    WASTE MANAGEMENT, 2022, 138 : 274 - 284