Asymptotics of Sum of Heavy-tailed Risks with Copulas

被引:0
|
作者
Yang, Fan [1 ]
Zhang, Yi [2 ]
机构
[1] Univ Waterloo, Dept Stat & Actuarial Sci, Waterloo, ON N2L3G1, Canada
[2] Zhejiang Univ, Dept Math, Hangzhou 310027, Zhejiang, Peoples R China
基金
加拿大自然科学与工程研究理事会;
关键词
Tail asymptotics; Heavy tail; Copula; Aggregate risk; PORTFOLIO DIVERSIFICATION; DEPENDENCE; CONVOLUTIONS; BEHAVIOR;
D O I
10.1007/s11009-023-10066-7
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the tail asymptotics of the sum of two heavy-tailed random variables. The dependence structure is modeled by copulas with the so-called tail order property. Examples are presented to illustrate the approach. Further for each example we apply the main results to obtain the asymptotic expansions for Value-at-Risk of aggregate risk.
引用
收藏
页数:23
相关论文
共 50 条
  • [31] Tail asymptotics for the area under the excursion of a random walk with heavy-tailed increments
    Denisov, Denis
    Perfilev, Elena
    Wachtel, Vitali
    [J]. JOURNAL OF APPLIED PROBABILITY, 2021, 58 (01) : 217 - 237
  • [32] EQUIVALENT CONDITIONS OF LOCAL ASYMPTOTICS FOR THE OVERSHOOT OF A RANDOM WALK WITH HEAVY-TAILED INCREMENTS
    Wang Kaiyong
    Wang Yuebao
    Yin Chuancun
    [J]. ACTA MATHEMATICA SCIENTIA, 2011, 31 (01) : 109 - 116
  • [33] Tail asymptotics for the supercritical Galton-Watson process in the heavy-tailed case
    V. I. Wachtel
    D. E. Denisov
    D. A. Korshunov
    [J]. Proceedings of the Steklov Institute of Mathematics, 2013, 282 : 273 - 297
  • [34] Asymptotics for Tail Probability of Random Sums with a Heavy-Tailed Number and Dependent Increments
    Wang, Kaiyong
    Lin, Jinguan
    Yang, Yang
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2014, 43 (10-12) : 2595 - 2604
  • [35] Tail asymptotics for the supercritical Galton-Watson process in the heavy-tailed case
    Wachtel, V. I.
    Denisov, D. E.
    Korshunov, D. A.
    [J]. PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2013, 282 (01) : 273 - 297
  • [36] Minimum of heavy-tailed random variables is not heavy tailed
    Leipus, Remigijus
    Siaulys, Jonas
    Konstantinides, Dimitrios
    [J]. AIMS MATHEMATICS, 2023, 8 (06): : 13066 - 13072
  • [37] Matrix Mittag-Leffler distributions and modeling heavy-tailed risks
    Albrecher, Hansjoerg
    Bladt, Martin
    Bladt, Mogens
    [J]. EXTREMES, 2020, 23 (03) : 425 - 450
  • [38] Special Issue on Risk Management Techniques for Catastrophic and Heavy-Tailed Risks
    Balbas, Alejandro
    Garrido, Jose
    [J]. RISKS, 2014, 2 (04): : 467 - +
  • [39] Finite time ruin probability with heavy-tailed insurance and financial risks
    Chen, Yu
    Su, Chun
    [J]. STATISTICS & PROBABILITY LETTERS, 2006, 76 (16) : 1812 - 1820
  • [40] On heavy-tailed risks under Gaussian copula: The effects of marginal transformation
    Das, Bikramjit
    Fasen-Hartmann, Vicky
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2024, 202