Predicting early postoperative PONV using multiple machine-learning- and deep-learning-algorithms

被引:9
|
作者
Zhou, Cheng-Mao [1 ,2 ]
Wang, Ying [3 ]
Xue, Qiong [3 ]
Yang, Jian-Jun [3 ]
Zhu, Yu [1 ,2 ]
机构
[1] Cent Peoples Hosp Zhanjiang, Dept Anaesthesiol, Zhanjiang, Guangdong, Peoples R China
[2] Cent Peoples Hosp Zhanjiang, Anesthesia & Big Data Res Grp, Zhanjiang, Guangdong, Peoples R China
[3] Zhengzhou Univ, Affiliated Hosp 1, Dept Anesthesiol Pain & Perioperat Med, Zhengzhou, Henan, Peoples R China
关键词
PONV; Machine learning; Deep learning; SVC; AUC; RISK-FACTORS; NAUSEA; SURGERY;
D O I
10.1186/s12874-023-01955-z
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Objective PONV reduces patient satisfaction and increases hospital costs as patients remain in the hospital for longer durations. In this study, we build a preliminary artificial intelligence algorithm model to predict early PONV in patients. Methods We use R for statistical analysis and Python for the machine learning prediction model. Results Average characteristic engineering results showed that haloperidol, sex, age, history of smoking, and history of PONV were the first 5 contributing factors in the occurrence of early PONV. Test group results for artificial intelligence prediction of early PONV: in terms of accuracy, the four best algorithms were CNNRNN (0.872), Decision Tree (0.868), SVC (0.866) and adab (0.865); in terms of precision, the three best algorithms were CNNRNN (1.000), adab (0.400) and adab (0.868); in terms of AUC, the top three algorithms were Logistic Regression (0.732), SVC (0.731) and adab (0.722). Finally, we built a website to predict early PONV online using the Streamlit app on the following website: (https://zhouchengmao-streamlit-app-lsvc-ad-st-app-lsvc-adab-ponv-m9ynsb.streamlit.app/). Conclusion Artificial intelligence algorithms can predict early PONV, whereas logistic regression, SVC and adab were the top three artificial intelligence algorithms in overall performance. Haloperidol, sex, age, smoking history, and PONV history were the first 5 contributing factors associated with early PONV.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Predicting the Compressive Strength of Environmentally Friendly Concrete Using Multiple Machine Learning Algorithms
    Yang, Yanhua
    Liu, Guiyong
    Zhang, Haihong
    Zhang, Yan
    Yang, Xiaolong
    BUILDINGS, 2024, 14 (01)
  • [32] An Approach for Predicting Essential Genes Using Multiple Homology Mapping and Machine Learning Algorithms
    Hua, Hong-Li
    Zhang, Fa-Zhan
    Labena, Abraham Alemayehu
    Dong, Chuan
    Jin, Yan-Ting
    Guo, Feng-Biao
    BIOMED RESEARCH INTERNATIONAL, 2016, 2016
  • [33] A comparative study of machine learning and deep learning algorithms for predicting student's academic performance
    Bhushan, Megha
    Vyas, Satyam
    Mall, Shrey
    Negi, Arun
    INTERNATIONAL JOURNAL OF SYSTEM ASSURANCE ENGINEERING AND MANAGEMENT, 2023, 14 (06) : 2674 - 2683
  • [34] A comparative study of machine learning and deep learning algorithms for predicting student’s academic performance
    Megha Bhushan
    Satyam Vyas
    Shrey Mall
    Arun Negi
    International Journal of System Assurance Engineering and Management, 2023, 14 : 2674 - 2683
  • [35] Machine Learning for Predicting Early High Postoperative IOP After Trabeculectomy
    Lin, Wei-Chun
    Chen, Aiyin
    Chiang, Michael F.
    Hribar, Michelle
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2022, 63 (07)
  • [36] Multiple disease prediction using Machine learning algorithms
    Arumugam K.
    Naved M.
    Shinde P.P.
    Leiva-Chauca O.
    Huaman-Osorio A.
    Gonzales-Yanac T.
    Materials Today: Proceedings, 2023, 80 : 3682 - 3685
  • [37] Ad Click Fraud Detection Using Machine Learning and Deep Learning Algorithms
    Alzahrani, Reem A.
    Aljabri, Malak
    Mohammad, Rami A. Mustafa
    IEEE ACCESS, 2025, 13 : 12746 - 12763
  • [38] Disease Inference on Medical Datasets Using Machine Learning and Deep Learning Algorithms
    Chinnaswamy, Arunkumar
    Srinivasan, Ramakrishnan
    Gaurang, Desai Prutha
    COMPUTATIONAL VISION AND BIO-INSPIRED COMPUTING, 2020, 1108 : 902 - 908
  • [39] Classification of Different Plant Species Using Deep Learning and Machine Learning Algorithms
    Chouhan, Siddharth Singh
    Singh, Uday Pratap
    Sharma, Utkarsh
    Jain, Sanjeev
    WIRELESS PERSONAL COMMUNICATIONS, 2024, 136 (04) : 2275 - 2298
  • [40] Fake Job Detection and Analysis Using Machine Learning and Deep Learning Algorithms
    Anita, C. S.
    Nagarajan, P.
    Sairam, G. Aditya
    Ganesh, P.
    Deepakkumar, G.
    REVISTA GEINTEC-GESTAO INOVACAO E TECNOLOGIAS, 2021, 11 (02): : 642 - 650