Spinel ferrite catalysts for CO2 reduction via reverse water gas shift reaction

被引:9
|
作者
Navarro, J. C. [1 ,4 ]
Hurtado, C. [1 ]
Gonzalez-Castano, M. [1 ]
Bobadilla, L. F. [1 ]
Ivanova, S. [1 ]
Cumbrera, F. L. [2 ]
Centeno, M. A. [1 ]
Odriozola, J. A. [1 ,3 ]
机构
[1] Univ Seville, Ctr Mixto CSIC, Inst Ciencia Mat Sevilla, Avda Amer Vespucio 49, Seville 41092, Spain
[2] Univ Seville, Dept Fis Mat Condensada, Seville 41080, Spain
[3] Univ Surrey, Dept Chem & Proc Engn, Guildford GU2 7XH, England
[4] King Abdullah Univ Sci & Technol, KAUST Catalysis Ctr KCC, Thuwal 239556900, Saudi Arabia
关键词
Spinel; Ferrite; Cu; Ni; Oxygen vacancies; Raman; RWGS reaction; ZNFE2O4; PERFORMANCE; NIFE2O4;
D O I
10.1016/j.jcou.2022.102356
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The production of CO via Reverse Water Gas Shift (RWGS) reaction is a suitable route for CO2 valorization. In this study a series of modified spinels AB2O4 (A site symbolscript Ni, Zn and Cu and B symbolscript are investigated as RWGS catalysts and their structure-to-function relationships derived from the changes on the A-site cation are ratio-nalized. For all ferrite systems, the RWGS reaction the process main activity and selectivity is governed by the B -site cation, but the variations on the A-site metals determines catalysts' structural features and stability in the reaction. Among the catalyst series, superior RWGS performance displayed the ferrites modified with Cu and Ni associated to the greater oxygen vacancy population for those spinels enabled by the partial allocation on symbolscript cations into the tetrahedral sites.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Catalytic performance of Co and Ni doped Fe-based catalysts for the hydrogenation of CO2 to CO via reverse water-gas shift reaction
    Sengupta, Surajit
    Jha, Ajay
    Shende, Pranshu
    Maskara, Rohit
    Das, Asit Kumar
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2019, 7 (01):
  • [22] Molybdenum carbide clusters for thermal conversion of CO2 to CO via reverse water-gas shift reaction
    Ying Ma
    Zhanglong Guo
    Qian Jiang
    Kuang-Hsu Wu
    Huimin Gong
    Yuefeng Liu
    Journal of Energy Chemistry , 2020, (11) : 37 - 43
  • [23] Molybdenum carbide clusters for thermal conversion of CO2 to CO via reverse water-gas shift reaction
    Ma, Ying
    Guo, Zhanglong
    Jiang, Qian
    Wu, Kuang-Hsu
    Gong, Huimin
    Liu, Yuefeng
    JOURNAL OF ENERGY CHEMISTRY, 2020, 50 (50): : 37 - 43
  • [24] Supported Nanostructured MoxC Materials for the Catalytic Reduction of CO2 through the Reverse Water Gas Shift Reaction
    Pajares, Arturo
    Liu, Xianyun
    Busacker, Joan R.
    Ramirez de la Piscina, Pilar
    Homs, Narcis
    NANOMATERIALS, 2022, 12 (18)
  • [25] Combustion synthesis of copper ceria solid solution for CO2 conversion to CO via reverse water gas shift reaction
    Ebrahimi, Parisa
    Kumar, Anand
    Khraisheh, Majeda
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (97) : 41259 - 41267
  • [26] Synergistic Coupling of Photo and Thermal Conditions for Enhancing CO2 Reduction Rates in the Reverse Water Gas Shift Reaction
    Loh, Joel Y. Y.
    Ye, Yufeng
    Kherani, Nazir P.
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (02) : 2234 - 2242
  • [27] Understanding CO2 reduction via reverse water-gas shift triggered by electromagnetic induction at moderate condition
    Chen, Jin
    Su, Shuangyong
    Wang, Chunqi
    Li, Qiang
    Wang, Huiling
    Xu, Wenjian
    Li, Xiaolan
    Jia, Hongpeng
    CHEMICAL ENGINEERING JOURNAL, 2023, 476
  • [28] Single-Atom Platinum Catalyst for Efficient CO2 Conversion via Reverse Water Gas Shift Reaction
    He, Yulian
    Huang, Dahong
    MOLECULES, 2023, 28 (18):
  • [29] Mathematical Modeling of CO2 Reforming of Methane with Reverse Water-Gas Shift Reaction
    Rahimi, Ahmad Reza
    AleEbrahim, Habib
    Sohrabi, Morteza
    Nouri, Seyed Mohammad Mahdi
    KINETICS AND CATALYSIS, 2023, 64 (05) : 578 - 587
  • [30] Conversion of CO2 by reverse water gas shift (RWGS) reaction using a hydrogen oxyflame
    Shekari, Ali
    Labrecque, Raynald
    Larocque, Germain
    Vienneau, Michel
    Simoneau, Martin
    Schulz, Robert
    FUEL, 2023, 344