Kasteleyn cokernels and perfect matchings on planar bipartite graphs

被引:0
|
作者
Taylor, Libby [1 ]
机构
[1] Stanford Univ, Stanford, CA 94305 USA
关键词
Kasteleyn cokernel; Perfect matching; Jacobian;
D O I
10.1007/s10801-022-01186-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The determinant method of Kasteleyn gives a method of computing the number of perfect matchings of a planar bipartite graph. In addition, results of Bernardi exhibit a bijection between spanning trees of a planar bipartite graph and elements of its Jacobian. In this paper, we explore an adaptation of Bernardi's results, providing a simply transitive group action of the Kasteleyn cokernel of a planar bipartite graph on its set of perfect matchings, when the planar bipartite graph in question is of the form G(+), as defined by Kenyon, Propp and Wilson.
引用
收藏
页码:727 / 737
页数:11
相关论文
共 50 条
  • [41] Deterministically Isolating a Perfect Matching in Bipartite Planar Graphs
    Datta, Samir
    Kulkarni, Raghav
    Roy, Sambuddha
    THEORY OF COMPUTING SYSTEMS, 2010, 47 (03) : 737 - 757
  • [42] Deterministically Isolating a Perfect Matching in Bipartite Planar Graphs
    Samir Datta
    Raghav Kulkarni
    Sambuddha Roy
    Theory of Computing Systems, 2010, 47 : 737 - 757
  • [43] A Note on Matchings of Bipartite Graphs
    蔡小涛
    应用数学, 1991, (01) : 97 - 100
  • [44] Randomized sequential importance sampling for estimating the number of perfect matchings in bipartite graphs
    Diaconis, Persi
    Kolesnik, Brett
    ADVANCES IN APPLIED MATHEMATICS, 2021, 131
  • [45] Algorithms for generating minimal blockers of perfect matchings in bipartite graphs and related problems
    Boros, E
    Elbassioni, K
    Gurvich, V
    ALGORITHMS ESA 2004, PROCEEDINGS, 2004, 3221 : 122 - 133
  • [46] Coloured matchings in bipartite graphs
    Cameron, K
    DISCRETE MATHEMATICS, 1997, 169 (1-3) : 205 - 209
  • [47] INDUCED MATCHINGS IN BIPARTITE GRAPHS
    FAUDREE, RJ
    GYARFAS, A
    SCHELP, RH
    TUZA, Z
    DISCRETE MATHEMATICS, 1989, 78 (1-2) : 83 - 87
  • [48] PERFECT MATCHINGS IN O(n log n) TIME IN REGULAR BIPARTITE GRAPHS
    Goel, Ashish
    Kapralov, Michael
    Khanna, Sanjeev
    SIAM JOURNAL ON COMPUTING, 2013, 42 (03) : 1392 - 1404
  • [49] Perfect Matchings in O(n log n) Time in Regular Bipartite Graphs
    Goel, Ashish
    Kapralov, Michael
    Khanna, Sanjeev
    STOC 2010: PROCEEDINGS OF THE 2010 ACM SYMPOSIUM ON THEORY OF COMPUTING, 2010, : 39 - 46
  • [50] Perfect Matchings in O (n1.5) Time in Regular Bipartite Graphs
    Goel, Ashish
    Kapralov, Michael
    Khanna, Sanjeev
    COMBINATORICA, 2019, 39 (02) : 323 - 354