Hybrid multi-objective optimization algorithm based on angle competition and neighborhood protection mechanism

被引:3
|
作者
Li, Yang [1 ,2 ]
Li, Weigang [1 ,2 ]
Zhao, Yuntao [1 ,2 ]
Li, Songtao [1 ,2 ]
机构
[1] Wuhan Univ Sci & Technol, Sch Informat Sci & Engn, Wuhan 430081, Peoples R China
[2] Wuhan Univ Sci & Technol, Minist Educ, Engn Res Ctr Met Automat & Measurement Technol, Wuhan 430081, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi-objective optimization; Neighborhood protection strategy; Hybrid operator; Angle competition mechanism; MANY-OBJECTIVE OPTIMIZATION; NONDOMINATED SORTING APPROACH; EVOLUTIONARY ALGORITHM; MULTIPLE OBJECTIVES; DECOMPOSITION; STRATEGY; MOEA/D;
D O I
10.1007/s10489-022-03920-7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
During recent decades, multi-objective optimization has aroused extensive attention, and a variety of related algorithms have been proposed. A hybrid multi-objective optimization algorithm based on angle competition and neighborhood protection mechanism (HCPMOEA) is proposed in this paper. First, an environmental selection strategy based on neighborhood protection is introduced to make great compromises between optimization performance and time consumption. Then, the difference between Genetic algorithm and Differential evolution is analyzed from the perspective of offspring distribution and a hybrid operator is proposed to obtain good balances between exploration and exploitation. Besides, an elite set is employed to improve chances of the superior solutions generating offspring, and angle competition strategy is adopted to realize optimization matching of parents, thus improving the quality of offspring. The performance of HCPMOEA has been proved by comparing with 13 classic or state-of-the-arts algorithms on 19 standard benchmark, and the corresponding results show the competitive advantages in effectiveness and efficiency. In addition, the practicality of the proposed HCPMOEA is further verified by two real-world instances. Therefore, all of the aforementioned results have proved the superiority of the proposed HCPMOEA in solving bi-objective and tri-objective problems.
引用
收藏
页码:9598 / 9620
页数:23
相关论文
共 50 条
  • [41] Multi-objective Optimization Using a Hybrid Differential Evolution Algorithm
    Wang, Xianpeng
    Tang, Lixin
    2012 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2012,
  • [42] A hybrid multi-objective firefly algorithm for big data optimization
    Wang, Hui
    Wang, Wenjun
    Cui, Laizhong
    Sun, Hui
    Zhao, Jia
    Wang, Yun
    Xue, Yu
    APPLIED SOFT COMPUTING, 2018, 69 : 806 - 815
  • [43] Hybrid algorithm for multi-objective optimization design of parallel manipulators
    Chen, Qiaohong
    Yang, Chao
    APPLIED MATHEMATICAL MODELLING, 2021, 98 : 245 - 265
  • [44] A hybrid multi-objective optimization algorithm for software requirement problem
    Marghny, M. H.
    Zanaty, Elnomery A. A.
    Dukhan, Wathiq H. H.
    Reyad, Omar
    ALEXANDRIA ENGINEERING JOURNAL, 2022, 61 (09) : 6991 - 7005
  • [45] An Improved Hybrid Multi-objective Particle Swarm Optimization Algorithm
    Zhou, Zuan
    Dai, Guangming
    Fang, Pan
    Chen, Fangjie
    Tan, Yi
    ADVANCES IN COMPUTATION AND INTELLIGENCE, PROCEEDINGS, 2008, 5370 : 181 - 188
  • [46] Efficient Hybrid Memetic Algorithm for Multi-Objective Optimization Problems
    Mohammed, Tareq Abed
    Sahmoud, Shaaban
    Bayat, Oguz
    2017 INTERNATIONAL CONFERENCE ON ENGINEERING AND TECHNOLOGY (ICET), 2017,
  • [47] Multi-Objective Optimization of Hybrid Renewable Energy System Using an Enhanced Multi-Objective Evolutionary Algorithm
    Ming, Mengjun
    Wang, Rui
    Zha, Yabing
    Zhang, Tao
    ENERGIES, 2017, 10 (05)
  • [48] Text clustering with a hybrid multi-objective optimization approach: The multi-objective firefly differential Jaya Algorithm
    Naderi, Muhammad
    Amiri, Maryam
    SWARM AND EVOLUTIONARY COMPUTATION, 2025, 93
  • [49] A pareto-based hybrid whale optimization algorithm with tabu search for multi-objective optimization
    AbdelAziz A.M.
    Soliman T.H.A.
    Ghany K.K.A.
    Sewisy A.A.E.-M.
    Algorithms, 2019, 12 (02):
  • [50] A Pareto-Based Hybrid Whale Optimization Algorithm with Tabu Search for Multi-Objective Optimization
    AbdelAziz, Amr Mohamed
    Soliman, Taysir Hassan A.
    Ghany, Kareem Kamal A.
    Sewisy, Adel Abu El-Magd
    ALGORITHMS, 2019, 12 (12)