Spatial-temporal feature refine network for single image super-resolution

被引:2
|
作者
Qin, Jiayi [1 ,2 ]
Chen, Lihui [1 ,2 ]
Liu, Kai [3 ]
Jeon, Gwanggil [4 ,5 ]
Yang, Xiaomin [1 ,2 ]
机构
[1] Sichuan Univ, Coll Elect & Informat Engn, Chengdu 610065, Sichuan, Peoples R China
[2] Sichuan Univ, Sch Aeronaut & Astronaut, Chengdu 610065, Sichuan, Peoples R China
[3] Sichuan Univ, Coll Elect Engn, Chengdu 610065, Sichuan, Peoples R China
[4] Incheon Natl Univ, Dept Embedded Syst Engn, Incheon 22012, South Korea
[5] Xidian Univ, Sch Elect Engn, Xian 710071, Peoples R China
关键词
Single image super-resolution; Lightweight convolution neural network; Spatial-temporal feature refine network; Multi-attention enhanced residual block;
D O I
10.1007/s10489-022-03741-8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, numerous convolution neural networks (CNNs) for single image super-resolution (SISR) have shown powerful capability in image reconstruction. Especially, accurate and compact networks receive widespread attention due to their superiority in running speed on resources-limited devices. However, in most lightweight CNN-based methods, the limitation of informative features extraction results in mediocre reconstructed images. In this paper, we propose a spatial-temporal feature refine network (STFRN) to alleviate the above problem by extract features from diverse dimensions. Specifically, we first introduce a spatial-temporal stage learning (STSL) of our STFRN in two distinct views: 1) for temporal feature extraction, we enhance the relevance of various stages and introduce a persistent memory via multi-stage learning, thereby boosting its reconstruction capability; 2) for spatial feature extraction, we enlarge the receptive fields by densely deepening the network to capture more context features. In the time dimension, we only maintain the main stage, i.e., the last stage, for efficient training. In addition to STSL, we elaborately design an effective multi-attention enhanced residual block (MERB), which further refines informative features at the depth level. In detail, by combining multiple attention blocks, we achieve the complementary features from diverse views (i.e., in point-wise, channel-wise, and spatial dimensions). Compared with ordinary residual blocks, MERB realizes better results while consuming less computational resources. Like most literature, we also utilize residual learning and dense connection to promote performance. Extensive experiments show our STFRN levering on the STSL and MERBs is superior to other state-of-the-art methods in quality and quantity.
引用
收藏
页码:9668 / 9688
页数:21
相关论文
共 50 条
  • [21] Lightweight interactive feature inference network for single-image super-resolution
    Wang, Li
    Li, Xing
    Tian, Wei
    Peng, Jianhua
    Chen, Rui
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [22] A Lightweight Pyramid Feature Fusion Network for Single Image Super-Resolution Reconstruction
    Liu, Bingzan
    Ning, Xin
    Ma, Shichao
    Lian, Xiaobin
    IEEE SIGNAL PROCESSING LETTERS, 2024, 31 : 1575 - 1579
  • [23] Multi-feature fusion attention network for single image super-resolution
    Chen, Jiacheng
    Wang, Wanliang
    Xing, Fangsen
    Tu, Hangyao
    IET IMAGE PROCESSING, 2023, 17 (05) : 1389 - 1402
  • [24] GATING FEATURE DENSE NETWORK FOR SINGLE ANISOTROPIC MR IMAGE SUPER-RESOLUTION
    He, Weidong
    Hu, Yangjinan
    Wang, Lulu
    He, Zhongshi
    Du, Jinglong
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 1670 - 1674
  • [25] Single image super-resolution based on trainable feature matching attention network
    Chen, Qizhou
    Shao, Qing
    PATTERN RECOGNITION, 2024, 149
  • [26] SREFBN: Enhanced feature block network for single-image super-resolution
    Ketsoi, Vachiraporn
    Raza, Muhammad
    Chen, Haopeng
    Yang, Xubo
    IET IMAGE PROCESSING, 2022, 16 (12) : 3143 - 3154
  • [27] Multi-scale feature feedback network for single image super-resolution
    Zhang, Wenbo
    Wu, Zhenhui
    Hou, Yandong
    Chen, Zhengquan
    He, Wenqiang
    2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 1141 - 1146
  • [28] Dual-branch feature learning network for single image super-resolution
    Yu L.
    Deng Q.
    Liu B.
    Wu H.
    Hu H.
    Multimedia Tools and Applications, 2023, 82 (28) : 43297 - 43314
  • [29] SRFeat: Single Image Super-Resolution with Feature Discrimination
    Park, Seong-Jin
    Son, Hyeongseok
    Cho, Sunghyun
    Hong, Ki-Sang
    Lee, Seungyong
    COMPUTER VISION - ECCV 2018, PT XVI, 2018, 11220 : 455 - 471
  • [30] Hyperspectral Image Super-Resolution Based on Spatial-Spectral Feature Extraction Network
    Li Yanshan
    Chen Shifu
    Luo Wenhan
    Zhou Li
    Xie Weixin
    CHINESE JOURNAL OF ELECTRONICS, 2023, 32 (03) : 415 - 428