HyperFormer: Enhancing Entity and Relation Interaction for Hyper-Relational Knowledge Graph Completion

被引:1
|
作者
Hu, Zhiwei [1 ]
Gutierrez-Basulto, Victor [2 ]
Xiang, Zhiliang [2 ]
Li, Ru [1 ]
Pan, Jeff Z. [3 ]
机构
[1] Shanxi Univ, Sch Comp & Informat Technol, Taiyuan, Peoples R China
[2] Cardiff Univ, Sch Comp Sci & Informat, Cardiff, Wales
[3] Univ Edinburgh, ILCC, Sch Informat, Edinburgh, Scotland
基金
中国国家自然科学基金;
关键词
knowledge graph; hyper-relational graph; knowledge graph completion;
D O I
10.1145/3583780.3614922
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Hyper-relational knowledge graphs (HKGs) extend standard knowledge graphs by associating attribute-value qualifiers to triples, which effectively represent additional fine-grained information about its associated triple. Hyper-relational knowledge graph completion (HKGC) aims at inferring unknown triples while considering its qualifiers. Most existing approaches to HKGC exploit a global-level graph structure to encode hyper-relational knowledge into the graph convolution message passing process. However, the addition of multi-hop information might bring noise into the triple prediction process. To address this problem, we propose HyperFormer, a model that considers local-level sequential information, which encodes the content of the entities, relations and qualifiers of a triple. More precisely, HyperFormer is composed of three different modules: an entity neighbor aggregator module allowing to integrate the information of the neighbors of an entity to capture different perspectives of it; a relation qualifier aggregator module to integrate hyper-relational knowledge into the corresponding relation to refine the representation of relational content; a convolution-based bidirectional interaction module based on a convolutional operation, capturing pairwise bidirectional interactions of entity-relation, entity-qualifier, and relation-qualifier. Furthermore, we introduce a Mixture-of-Experts strategy into the feed-forward layers of HyperFormer to strengthen its representation capabilities while reducing the amount of model parameters and computation. Extensive experiments on three well-known datasets with four different conditions demonstrate HyperFormer's effectiveness. Datasets and code are available at https://github.com/zhiweihu1103/HKGC-HyperFormer.
引用
收藏
页码:803 / 812
页数:10
相关论文
共 50 条
  • [41] Knowledge Graph Completion via Complete Attention between Knowledge Graph and Entity Descriptions
    Zhao, Minjun
    Zhao, Yawei
    Xu, Bing
    PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND APPLICATION ENGINEERING (CSAE2019), 2019,
  • [42] Relational Graph Neural Network with Hierarchical Attention for Knowledge Graph Completion
    Zhang, Zhao
    Zhuang, Fuzhen
    Zhu, Hengshu
    Shi, Zhiping
    Xiong, Hui
    He, Qing
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 9612 - 9619
  • [43] Enhancing knowledge graph embedding with relational constraints
    Li, Mingda
    Sun, Zhengya
    Zhang, Siheng
    Zhang, Wensheng
    NEUROCOMPUTING, 2021, 429 : 77 - 88
  • [44] Enhancing Knowledge Graph Embedding with Relational Constraints
    Li, Mingda
    Sun, Zhengya
    Zhang, Siheng
    Zhang, Wensheng
    11TH IEEE INTERNATIONAL CONFERENCE ON KNOWLEDGE GRAPH (ICKG 2020), 2020, : 33 - 40
  • [45] Modeling Relation Paths for Knowledge Graph Completion
    Shen, Ying
    Ding, Ning
    Zheng, Hai-Tao
    Li, Yaliang
    Yang, Min
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2021, 33 (11) : 3607 - 3617
  • [46] Scalable Learning of Entity and Predicate Embeddings for Knowledge Graph Completion
    Minervini, Pasquale
    Fanizzi, Nicola
    d'Amato, Claudia
    Esposito, Floriana
    2015 IEEE 14TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), 2015, : 162 - 167
  • [47] Augmenting Embedding Projection With Entity Descriptions for Knowledge Graph Completion
    Chen, Junfan
    Xu, Jie
    Bo, Manhui
    Tang, Hongwu
    IEEE ACCESS, 2021, 9 : 159955 - 159964
  • [48] Knowledge Graph Completion Based on Entity Descriptions in Hyperbolic Space
    Zhang, Xiaoming
    Tian, Dongjie
    Wang, Huiyong
    APPLIED SCIENCES-BASEL, 2023, 13 (01):
  • [49] Graph Attention Network with Relational Dynamic Factual Fusion for Knowledge Graph Completion
    Yu, Mei
    Zuo, Yilin
    Zhang, Wenbin
    Zhao, Mankun
    Xu, Tianyi
    Zhao, Yue
    Guo, Jiujiang
    Yu, Jian
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: RESEARCH TRACK, PT IV, ECML PKDD 2024, 2024, 14944 : 89 - 106
  • [50] Disentangled Relational Graph Neural Network with Contrastive Learning for knowledge graph completion
    Yin, Hong
    Zhong, Jiang
    Li, Rongzhen
    Li, Xue
    KNOWLEDGE-BASED SYSTEMS, 2024, 295