Harnessing the endogenous Type I-C CRISPR-Cas system for genome editing in Bifidobacterium breve

被引:4
|
作者
Han, Xiao [1 ,2 ]
Chang, Lulu [1 ,2 ]
Chen, Haiqin [1 ,2 ]
Zhao, Jianxin [1 ,2 ]
Tian, Fengwei [1 ,2 ,3 ]
Ross, R. Paul [3 ,4 ]
Stanton, Catherine [3 ,5 ]
van Sinderen, Douwe [4 ]
Chen, Wei [1 ,2 ,6 ]
Yang, Bo [1 ,2 ,3 ]
机构
[1] Jiangnan Univ, State Key Lab Food Sci & Resources, Wuxi, Jiangsu, Peoples R China
[2] Jiangnan Univ, Sch Food Sci & Technol, Wuxi, Jiangsu, Peoples R China
[3] Jiangnan Univ, Int Joint Res Ctr Probiot & Gut Hlth, Wuxi, Jiangsu, Peoples R China
[4] Univ Coll Cork, APC Microbiome Ireland, Cork, Ireland
[5] Teagasc Food Res Ctr, Cork, Ireland
[6] Jiangnan Univ, Natl Engn Res Ctr Funct Food, Wuxi, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Bifidobacterium breve; CRISPR-Cas; Type I-C; genome editing; EVOLUTIONARY CLASSIFICATION; METABOLISM;
D O I
10.1128/aem.02074-23
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Bifidobacterium breve, one of the main bifidobacterial species colonizing the human gastrointestinal tract in early life, has received extensive attention for its purported beneficial effects on human health. However, exploration of the mode of action of such beneficial effects exerted by B. breve is cumbersome due to the lack of effective genetic tools, which limits its synthetic biology application. The widespread presence of CRISPR-Cas systems in the B. breve genome makes endogenous CRISPR-based gene editing toolkits a promising tool. This study revealed that Type I-C CRISPR-Cas systems in B. breve can be divided into two groups based on the amino acid sequences encoded by cas gene clusters. Deletion of the gene coding uracil phosphoribosyl-transferase (upp) was achieved in five B. breve strains from both groups using this system. In addition, translational termination of uracil phosphoribosyl-transferase was successfully achieved in B. breve FJSWX38M7 by single-base substitution of the upp gene and insertion of three stop codons. The gene encoding linoleic acid isomerase (bbi) in B. breve, being a characteristic trait, was deleted after plasmid curing, which rendered it unable to convert linoleic acid into conjugated linoleic acid, demonstrating the feasibility of successive editing. This study expands the toolkit for gene manipulation in B. breve and provides a new approach toward functional genome editing and analysis of B. breve strains.IMPORTANCEThe lack of effective genetic tools for Bifidobacterium breve is an obstacle to studying the molecular mechanisms of its health-promoting effects, hindering the development of next-generation probiotics. Here, we introduce a gene editing method based on the endogenous CRISPR-Cas system, which can achieve gene deletion, single-base substitution, gene insertion, and successive gene editing in B. breve. This study will facilitate discovery of functional genes and elucidation of molecular mechanisms of B. breve pertaining to health-associated benefits.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Repurposing endogenous Type I-D CRISPR-Cas system for genome editing in Synechococcus sp. PCC7002
    Yang, Shuxiao
    Zhang, Yongjiu
    Li, Chunyan
    Tan, Xiaoming
    MICROBIOLOGICAL RESEARCH, 2024, 288
  • [32] Functional Identification of the Xanthomonas oryzae pv. oryzae Type I-C CRISPR-Cas System and Its Potential in Gene Editing Application
    Liu, Qibing
    Wang, Siwei
    Long, Juying
    Chen, Zhuoyue
    Yang, Bing
    Lin, Fei
    FRONTIERS IN MICROBIOLOGY, 2021, 12
  • [33] Cyanobacterial type I CRISPR-Cas systems: distribution, mechanisms, and genome editing applications
    Zhang, Yongjiu
    Yang, Shuxiao
    Zheng, Xianliang
    Tan, Xiaoming
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2025, 13
  • [34] Genome editing in the mammalian brain using the CRISPR-Cas system
    Nishiyama, Jun
    NEUROSCIENCE RESEARCH, 2019, 141 : 4 - 12
  • [35] Efficient genome editing in zebrafish using a CRISPR-Cas system
    Woong Y Hwang
    Yanfang Fu
    Deepak Reyon
    Morgan L Maeder
    Shengdar Q Tsai
    Jeffry D Sander
    Randall T Peterson
    J-R Joanna Yeh
    J Keith Joung
    Nature Biotechnology, 2013, 31 : 227 - 229
  • [36] The implementation of the CRISPR-Cas system for Kluyveromyces lactis genome editing
    Gedvilaite, A.
    Ziogiene, D.
    Norkiene, M.
    Valaviciute, M.
    FEBS OPEN BIO, 2018, 8 : 193 - 193
  • [37] CRISPR-Cas system: a precise tool for plant genome editing
    Saraswat, Pooja
    Ranjan, Rajiv
    NUCLEUS-INDIA, 2022, 65 (01): : 81 - 98
  • [38] Efficient genome editing in zebrafish using a CRISPR-Cas system
    Hwang, Woong Y.
    Fu, Yanfang
    Reyon, Deepak
    Maeder, Morgan L.
    Tsai, Shengdar Q.
    Sander, Jeffry D.
    Peterson, Randall T.
    Yeh, J-R Joanna
    Joung, J. Keith
    NATURE BIOTECHNOLOGY, 2013, 31 (03) : 227 - 229
  • [39] The CRISPR-Cas system for plant genome editing: advances and opportunities
    Kumar, Vinay
    Jain, Mukesh
    JOURNAL OF EXPERIMENTAL BOTANY, 2015, 66 (01) : 47 - 57
  • [40] CRISPR-Cas system: a precise tool for plant genome editing
    Pooja Saraswat
    Rajiv Ranjan
    The Nucleus, 2022, 65 : 81 - 98