MLChain: a privacy-preserving model learning framework using blockchain

被引:0
|
作者
Bansal, Vidhi [1 ]
Baliyan, Niyati [2 ]
Ghosh, Mohona [1 ]
机构
[1] Indira Gandhi Delhi Tech Univ Women, Dept Informat Technol, New Delhi, India
[2] Natl Inst Technol Kurukshetra, Dept Comp Engn, Kurukshetra, India
关键词
Machine learning; Blockchain; Classification; Privacy-preserving; Predictive modeling; PROPAGATION LOGISTIC-REGRESSION;
D O I
10.1007/s10207-023-00754-3
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this work, we present a blockchain-based secure and flexible distributed privacy-preserving online model that helps in sharing key features of datasets across multiple organizations without violating the privacy of data. In our model, all members are encouraged to participate, discouraged to write fake data. Learning is carried out without sharing of raw data, and data sharing is immutable that improves prediction results of the data held by each member of an industry. We also propose a new consensus algorithm-Proof of Share for adding a valid transaction to the blockchain, thus preventing non participating members from reading any of the data shared by the peer and discouraging fake writes. We evaluated our model on 3, 5, and 10 members setup by applying decision tree, logistic regression, Gaussian naive Bayes, and support vector machine classifiers. The maximum increase of 26.9231% was observed in accuracy where results of a member's data were taken as baseline. F-beta(beta = 0.5) score increased by 0.4533 and F-1 score by 0.0800. The proposed model to the best of our knowledge is the only one that encourages all members to participate, rather than being passive listeners and discourages a member from forging results thus rendering it suitable for utilization in domains like health care, finance, education, etc. where data are unevenly split and secrecy of data and peers is required.
引用
收藏
页码:649 / 677
页数:29
相关论文
共 50 条
  • [1] MLChain: a privacy-preserving model learning framework using blockchain
    Vidhi Bansal
    Niyati Baliyan
    Mohona Ghosh
    International Journal of Information Security, 2024, 23 : 649 - 677
  • [2] A privacy-preserving federated learning framework for blockchain networks
    Abuzied, Youssif
    Ghanem, Mohamed
    Dawoud, Fadi
    Gamal, Habiba
    Soliman, Eslam
    Sharara, Hossam
    Elbatt, Tamer
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2024, 27 (04): : 3997 - 4014
  • [3] Poster: A Reliable and Accountable Privacy-Preserving Federated Learning Framework using the Blockchain
    Awan, Sana
    Li, Fengjun
    Luo, Bo
    Liu, Mei
    PROCEEDINGS OF THE 2019 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY (CCS'19), 2019, : 2561 - 2563
  • [4] PFcrowd: Privacy-Preserving and Federated Crowdsourcing Framework by Using Blockchain
    Zhang, Chen
    Guo, Yu
    Du, Hongwei
    Jia, Xiaohua
    2020 IEEE/ACM 28TH INTERNATIONAL SYMPOSIUM ON QUALITY OF SERVICE (IWQOS), 2020,
  • [5] Privacy-preserving and Byzantine-robust Federated Learning Framework using Permissioned Blockchain
    Kasyap, Harsh
    Tripathy, Somanath
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 238
  • [6] Bppfl: a blockchain-based framework for privacy-preserving federated learning
    Muhammad Asad
    Safa Otoum
    Cluster Computing, 2025, 28 (2)
  • [7] Privacy-preserving model learning on a blockchain network-of-networks
    Kuo, Tsung-Ting
    Kim, Jihoon
    Gabriel, Rodney A.
    JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2020, 27 (03) : 343 - 354
  • [8] Privacy-Preserving and Decentralized Federated Learning Model Based on the Blockchain
    Zhou W.
    Wang C.
    Xu J.
    Hu K.
    Wang J.
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2022, 59 (11): : 2423 - 2436
  • [9] The Blockchain-Based Edge Computing Framework for Privacy-Preserving Federated Learning
    Hu, Shili
    Li, Jiangfeng
    Zhang, Chenxi
    Zhao, Qinpei
    Ye, Wei
    2021 IEEE INTERNATIONAL CONFERENCE ON BLOCKCHAIN (BLOCKCHAIN 2021), 2021, : 566 - 571
  • [10] A Privacy-Preserving Blockchain Supervision Framework in the Multiparty Setting
    Wen, Baodong
    Wang, Yujue
    Ding, Yong
    Zheng, Haibin
    Liang, Hai
    Wang, Huiyong
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2021, 2021