The Blockchain-Based Edge Computing Framework for Privacy-Preserving Federated Learning

被引:0
|
作者
Hu, Shili [1 ]
Li, Jiangfeng [1 ]
Zhang, Chenxi [1 ]
Zhao, Qinpei [1 ]
Ye, Wei [2 ]
机构
[1] Tongji Univ, Sch Software Engn, Shanghai, Peoples R China
[2] Suzhou Tongji Blockchain Res Inst, Suzhou, Peoples R China
基金
上海市自然科学基金;
关键词
blockchain; federated learning; edge computing; privacy;
D O I
10.1109/BLOCKCHAIN53845.2021.00085
中图分类号
学科分类号
摘要
Nowadays, privacy-preserving artificial intelligence is gaining traction, with the goal of learning multiple models based on private data without leaking any personal information. Since the existing multi-party computation methods and other encryption-based methods have their flaws, we developed our own blockchain-based edge computing framework to achieve the decentralization and enhance the efficiency. Our framework enables a trustful, simplified and asynchronous federated learning in IoT and provides a convenient and secret classification service. Extensive evaluations on efficiency are provided, confirming the performance of our solutions.
引用
收藏
页码:566 / 571
页数:6
相关论文
共 50 条
  • [1] Privacy-preserving in Blockchain-based Federated Learning systems
    Sameera, K. M.
    Nicolazzo, Serena
    Arazzi, Marco
    Nocera, Antonino
    Rehiman, K. A. Rafidha
    Vinod, P.
    Conti, Mauro
    [J]. COMPUTER COMMUNICATIONS, 2024, 222 : 38 - 67
  • [2] Blockchain-based privacy-preserving multi-tasks federated learning framework
    Jia, Yunyan
    Xiong, Ling
    Fan, Yu
    Liang, Wei
    Xiong, Neal
    Xiao, Fengjun
    [J]. CONNECTION SCIENCE, 2024, 36 (01)
  • [3] PFLF: Privacy-Preserving Federated Learning Framework for Edge Computing
    Zhou, Hao
    Yang, Geng
    Dai, Hua
    Liu, Guoxiu
    [J]. IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2022, 17 : 1905 - 1918
  • [4] Privacy-Preserving and Verifiable Federated Learning Framework for Edge Computing
    Zhou, Hao
    Yang, Geng
    Huang, Yuxian
    Dai, Hua
    Xiang, Yang
    [J]. IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2023, 18 : 565 - 580
  • [5] A verifiable and privacy-preserving blockchain-based federated learning approach
    Ullah, Irshad
    Deng, Xiaoheng
    Pei, Xinjun
    Jiang, Ping
    Mushtaq, Husnain
    [J]. PEER-TO-PEER NETWORKING AND APPLICATIONS, 2023, 16 (05) : 2256 - 2270
  • [6] Blockchain-Based Privacy-Preserving Federated Learning for Mobile Crowdsourcing
    Ma, Haiying
    Huang, Shuanglong
    Guo, Jiale
    Lam, Kwok-Yan
    Yang, Tianling
    [J]. IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (08): : 13884 - 13899
  • [7] Privacy-Preserving Blockchain-Based Federated Learning for IoT Devices
    Zhao, Yang
    Zhao, Jun
    Jiang, Linshan
    Tan, Rui
    Niyato, Dusit
    Li, Zengxiang
    Lyu, Lingjuan
    Liu, Yingbo
    [J]. IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (03) : 1817 - 1829
  • [8] A verifiable and privacy-preserving blockchain-based federated learning approach
    Irshad Ullah
    Xiaoheng Deng
    Xinjun Pei
    Ping Jiang
    Husnain Mushtaq
    [J]. Peer-to-Peer Networking and Applications, 2023, 16 : 2256 - 2270
  • [9] Privacy-preserving blockchain-based federated learning for traffic flow prediction
    Qi, Yuanhang
    Hossain, M. Shamim
    Nie, Jiangtian
    Li, Xuandi
    [J]. FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2021, 117 : 328 - 337
  • [10] Privacy-preserving blockchain-based federated learning for brain tumor segmentation
    Kumar, Rajesh
    Bernard, Cobbinah M.
    Ullah, Aman
    Khan, Riaz Ullah
    Kumar, Jay
    Kulevome, Delanyo K.B.
    Yunbo, Rao
    Zeng, Shaoning
    [J]. Computers in Biology and Medicine, 2024, 177