An Inverse Problem for a Semilinear Elliptic Equation on Conformally Transversally Anisotropic Manifolds

被引:6
|
作者
Feizmohammadi, Ali [1 ]
Liimatainen, Tony [2 ]
Lin, Yi-Hsuan [3 ]
机构
[1] Fields Inst Res Math Sci, 222 Coll St, Toronto, ON M5T 3J1, Canada
[2] Univ Helsinki, Dept Math & Stat, Helsinki, Finland
[3] Natl Yang Ming Chiao Tung Univ, Dept Appl Math, Hsinchu, Taiwan
基金
芬兰科学院;
关键词
Inverse problems; Boundary determination; Semilinear elliptic equation; Riemannian manifold; Conformally transversally anisotropic; Gaussian quasimodes; WKB construction; BOUNDARY-VALUE PROBLEM; CALDERON PROBLEM; GLOBAL UNIQUENESS;
D O I
10.1007/s40818-023-00153-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a conformally transversally anisotropic manifold (M, g), we consider the semilinear elliptic equation (- Delta(g) + V)u + qu(2) = 0 on M. We show that an a priori unknown smooth function q can be uniquely determined from the knowledge of the Dirichlet-to-Neumann map associated to the equation. This extends the previously known results of the works Feizmohammadi and Oksanen (J Differ Equ 269(6):4683-4719, 2020), Lassas et al. (J Math Pures Appl 145:4482, 2021). Our proof is based on over-differentiating the equation: We linearize the equation to orders higher than the order two of the nonlinearity qu(2), and introduce non-vanishing boundary traces for the linearizations. We study interactions of two or more products of the so-called Gaussian quasimode solutions to the linearized equation. We develop an asymptotic calculus to solve Laplace equations, which have these interactions as source terms.
引用
收藏
页数:54
相关论文
共 50 条
  • [21] On a semilinear elliptic equation with inverse-square potential
    Haïm Brezis
    Louis Dupaigne
    Alberto Tesei
    Selecta Mathematica, 2005, 11
  • [22] The dirichlet problem for a degenerate semilinear elliptic equation
    Jia, G.
    Zhao, P.
    Yang, X.
    Nanjing Li Gong Daxue Xuebao/Journal of Nanjing University of Science and Technology, 2001, 25 (03): : 303 - 307
  • [23] On the Cauchy problem for a semilinear fractional elliptic equation
    Nguyen Huy Tuan
    Tran Dong Xuan
    Nguyen Anh Triet
    Lesnic, Daniel
    APPLIED MATHEMATICS LETTERS, 2018, 83 : 80 - 86
  • [24] Hölder stability for a semilinear elliptic inverse problem
    Choulli, Mourad
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 530 (01)
  • [25] AN INVERSE PROBLEM FOR A SEMILINEAR WAVE-EQUATION
    CAVATERRA, C
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1988, 2B (03): : 695 - 711
  • [26] AN INVERSE PROBLEM FOR A SEMILINEAR PARABOLIC EQUATION - REMARK
    LORENZI, A
    ANNALI DI MATEMATICA PURA ED APPLICATA, 1983, 135 : 399 - 401
  • [27] ON ONE INVERSE PROBLEM FOR SEMILINEAR PARABOLIC EQUATION
    BELOV, YY
    DOKLADY AKADEMII NAUK SSSR, 1991, 316 (05): : 1034 - 1038
  • [28] On An Eigenvalue Problem For An Anisotropic Elliptic Equation
    Taarabti, Said
    El Allali, Zakaria
    Ben Haddouch, Khalil
    2ND INTERNATIONAL CONFERENCE ON APPLIED MATHEMATICS, ICAM'2018, 2019, 2074
  • [29] An Inverse Problem for a Quasilinear Elliptic Equation
    Lyubanova A.S.
    Velisevich A.V.
    Journal of Mathematical Sciences, 2023, 270 (4) : 591 - 599
  • [30] The anisotropic Calderon problem on 3-dimensional conformally Stackel manifolds
    Daude, Thierry
    Kamran, Niky
    Nicoleau, Francois
    JOURNAL OF SPECTRAL THEORY, 2021, 11 (04) : 1669 - 1726