Performance optimization of In(Ga)As quantum dot intermediate band solar cells

被引:5
|
作者
Yang, Guiqiang [1 ,2 ]
Liu, Wen [1 ,2 ]
Bao, Yidi [1 ,2 ]
Chen, Xiaoling [1 ,2 ]
Ji, Chunxue [1 ,2 ]
Wei, Bo [1 ,3 ]
Yang, Fuhua [1 ,2 ]
Wang, Xiaodong [1 ,2 ,3 ,4 ]
机构
[1] Chinese Acad Sci, Inst Semicond, Engn Res Ctr Semicond Integrated Technol, Beijing 100083, Peoples R China
[2] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[3] Univ Chinese Acad Sci, Sch Integrated Circuits, Beijing 100049, Peoples R China
[4] Beijing Engn Res Ctr Semicond Micronano Integrated, Beijing 100083, Peoples R China
基金
国家重点研发计划;
关键词
In(Ga)As quantum dot; Intermediate band solar cell; Strain; Thermal excitation; Carrier lifetime; OPTICAL-PROPERTIES; VOLTAGE RECOVERY; EFFICIENCY; LAYER; ABSORPTION; DEVICES; STRAIN;
D O I
10.1186/s11671-023-03839-z
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Quantum dot intermediate band solar cell (QD-IBSC) has high efficiency theoretically. It can absorb photons with energy lower than the bandgap of the semiconductor through the half-filled intermediate band, extending the absorption spectrum of the cell. However, issues in the IBSC, such as the strain around multi-stacking QDs, low thermal excitation energy, and short carrier lifetime, lead to its low conversion efficiency. In recent years, many efforts have been made from different aspects. In this paper, we focus on In(Ga)As QD-IBSC, list the experimental technologies used to improve the performance of the cell and review the recent research progress. By analyzing the effects of different technologies on conversion efficiency, the development direction of the In(Ga)As QD-IBSC in the future is proposed.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Application of the photoreflectance technique to the characterization of quantum dot intermediate band materials for solar cells
    Canovas, E.
    Marti, A.
    Lopez, N.
    Antolin, E.
    Linares, P. G.
    Farmer, C. D.
    Stanley, C. R.
    Luque, A.
    THIN SOLID FILMS, 2008, 516 (20) : 6943 - 6947
  • [42] Computational Design of the Intermediate-Band Solar Cells Based on the Quantum Dot Superlattices
    Shao, Qinghui
    Balandin, Alexander A.
    Fedoseyev, Alexander I.
    Turowski, Marek
    NANOSCALE PHOTONIC AND CELL TECHNOLOGIES FOR PHOTOVOLTAICS, 2008, 7047
  • [43] Single intermediate-band solar cells of InGaN/InN quantum dot supracrystals
    Zhang, Qiubo
    Wei, Wensheng
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2013, 113 (01): : 75 - 82
  • [44] Single intermediate-band solar cells of InGaN/InN quantum dot supracrystals
    Qiubo Zhang
    Wensheng Wei
    Applied Physics A, 2013, 113 : 75 - 82
  • [45] Research Progress of Quantum Dot Intermediate Band Solar Cell
    Ma Shu-ying
    Shi Lei
    Chen Li-dong
    Feng Li-zhen
    ADVANCED TECHNOLOGIES IN MANUFACTURING, ENGINEERING AND MATERIALS, PTS 1-3, 2013, 774-776 : 2013 - 2016
  • [46] Band filling effects on temperature performance of intermediate band quantum wire solar cells
    Kunets, Vas. P.
    Furrow, C. S.
    Ware, M. E.
    de Souza, L. D.
    Benamara, M.
    Mortazavi, M.
    Salamo, G. J.
    JOURNAL OF APPLIED PHYSICS, 2014, 116 (08)
  • [48] Optimization of Growth and Device Performance for InAs Quantum Dot Solar Cells
    Hubbard, Seth M.
    Bennett, Mitchell
    Podell, Adam
    Forbes, David V.
    2012 38TH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC), 2012, : 1788 - 1793
  • [49] Enhanced current generation in quantum-dot intermediate band solar cells through optimizing the position of quantum dot layers
    Oteki Y.
    Miyashita N.
    Giteau M.
    Shiba K.
    Sogabe T.
    Okada Y.
    Optical Materials: X, 2022, 16
  • [50] Performance analysis of high efficiency InxGa1-xN/GaN intermediate band quantum dot solar cells
    Chowdhury, Injamam Ul Islam
    Sarker, Jith
    Shifat, A. S. M. Zadid
    Shuvro, Rezoan A.
    Mitul, Abu Farzan
    RESULTS IN PHYSICS, 2018, 9 : 432 - 439