Machine learning enables robust prediction of thermal boundary conductance of 2D substrate interfaces

被引:3
|
作者
Foss, Cameron [1 ]
Aksamija, Zlatan [1 ,2 ]
机构
[1] Univ Massachusetts Amherst, Elect & Comp Engn, Amherst, MA 01002 USA
[2] Univ Utah, Mat Sci & Engn, Salt Lake City, UT 84112 USA
基金
美国国家科学基金会;
关键词
MONOLAYER MOS2; BOSON PEAK;
D O I
10.1063/5.0142105
中图分类号
O59 [应用物理学];
学科分类号
摘要
Two-dimensional van der Waals (vdW) materials exhibit a broad palette of unique and superlative properties, including high electrical and thermal conductivities, paired with the ability to exfoliate or grow and transfer single layers onto a variety of substrates thanks to the relatively weak vdW interlayer bonding. However, the same vdW bonds also lead to relatively low thermal boundary conductance (TBC) between the 2D layer and its 3D substrate, which is the main pathway for heat removal and thermal management in devices, leading to a potential thermal bottleneck and dissipation-driven performance degradation. Here, we use first-principles phonon dispersion with our 2D-3D Boltzmann phonon transport model to compute the TBC of 156 unique 2D/3D interface pairs, many of which are not available in the literature. We then employ machine learning to develop streamlined predictive models, of which a neural network and a Gaussian process display the highest predictive accuracy (RMSE < 5 MW m(-2) K-1 and R-2 > 0.99) on the complete descriptor set. Then we perform sensitivity analysis to identify the most impactful descriptors, consisting of the vdW spring coupling constant, 2D thermal conductivity, ZA phonon bandwidth, the ZA phonon resonance gap, and the frequency of the first van Hove singularity or Boson peak. On that reduced set, we find that a decision-tree algorithm can make accurate predictions (RMSE < 20 MW m(-2) K-1 and R-2 > 0.9) on materials it has not been trained on by performing a transferability analysis. Our model allows optimal selection of 2D-substrate pairings to maximize heat transfer and will improve thermal management in future 2D nanoelectronics.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] 2D (NH4)BiI3 enables non-volatile optoelectronic memories for machine learning
    Tong, Bo
    Xu, Jiajun
    Du, Jinhong
    Liu, Peitao
    Du, Tianming
    Wang, Qiang
    Li, Langjun
    Wei, Yuning
    Li, Jiangxu
    Liang, Jinhua
    Liu, Chi
    Liu, Zhibo
    Li, Chen
    Ma, Lai-Peng
    Chai, Yang
    Ren, Wencai
    NATURE COMMUNICATIONS, 2025, 16 (01)
  • [42] When Machine Learning Meets 2D Materials: A Review
    Lu, Bin
    Xia, Yuze
    Ren, Yuqian
    Xie, Miaomiao
    Zhou, Liguo
    Vinai, Giovanni
    Morton, Simon A.
    Wee, Andrew T. S.
    van der Wiel, Wilfred G.
    Zhang, Wen
    Wong, Ping Kwan Johnny
    ADVANCED SCIENCE, 2024, 11 (13)
  • [43] Exploring and machine learning structural instabilities in 2D materials
    Simone Manti
    Mark Kamper Svendsen
    Nikolaj R. Knøsgaard
    Peder M. Lyngby
    Kristian S. Thygesen
    npj Computational Materials, 9
  • [44] Full interpretable machine learning in 2D with inline coordinates
    Kovalerchuk, Boris
    Phan, Hoang
    2021 25TH INTERNATIONAL CONFERENCE INFORMATION VISUALISATION (IV): AI & VISUAL ANALYTICS & DATA SCIENCE, 2021, : 189 - 196
  • [45] On the Technologies of Artificial Intelligence and Machine Learning for 2D Materials
    D. Yu. Kirsanova
    M. A. Soldatov
    Z. M. Gadzhimagomedova
    D. M. Pashkov
    A. V. Chernov
    M. A. Butakova
    A. V. Soldatov
    Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques, 2021, 15 : 485 - 494
  • [46] Machine learning transition temperatures from 2D structure
    Sifain, Andrew E.
    Rice, Betsy M.
    Yalkowsky, Samuel H.
    Barnes, Brian C.
    JOURNAL OF MOLECULAR GRAPHICS & MODELLING, 2021, 105
  • [47] Exploring and machine learning structural instabilities in 2D materials
    Manti, Simone
    Svendsen, Mark Kamper
    Knosgaard, Nikolaj R. R.
    Lyngby, Peder M. M.
    Thygesen, Kristian S. S.
    NPJ COMPUTATIONAL MATERIALS, 2023, 9 (01)
  • [48] On the Technologies of Artificial Intelligence and Machine Learning for 2D Materials
    Kirsanova, D. Yu.
    Soldatov, M. A.
    Gadzhimagomedova, Z. M.
    Pashkov, D. M.
    Chernov, A. V.
    Butakova, M. A.
    Soldatov, A. V.
    JOURNAL OF SURFACE INVESTIGATION, 2021, 15 (03): : 485 - 494
  • [49] Scientific Machine Learning of 2D Perovskite Nanosheet Formation
    Dahl, Jakob C.
    Niblett, Samuel
    Cho, Yeongsu
    Wang, Xingzhi
    Zhang, Ye
    Chan, Emory M.
    Alivisatos, A. Paul
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2023, 145 (42) : 23076 - 23087
  • [50] Machine Learning Study of the Magnetic Ordering in 2D Materials
    Acosta, Carlos Mera
    Ogoshi, Elton
    Souza, Jose Antonio
    Dalpian, Gustavo M.
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (07) : 9418 - 9432