A note on the distribution of weights of fixed-rank matrices over the binary field

被引:1
|
作者
Sanna, Carlo [1 ]
机构
[1] Politecn Torino, Dept Math Sci, Corso Duca Abruzzi 24, I-10129 Turin, Italy
关键词
Binary matrix; Hamming weight; Normal distribution; Random matrix; Rank;
D O I
10.1016/j.ffa.2022.102157
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let M be a random m x n rank -r matrix over the binary field F2, and let wt(M) be its Hamming weight, that is, the number of nonzero entries of M. We prove that, as m, n -> +infinity with r fixed and m/n tending to a constant, we have that wt(M) - 1-2-r 2 mn \/2-r(1-2-r) 4(m+n)mn converges in distribution to a standard normal random variable. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:7
相关论文
共 34 条
  • [1] On the distribution of the entries of a fixed-rank random matrix over a finite field
    Sanna, Carlo
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2024, 93
  • [2] Sparse PCA on fixed-rank matrices
    Del Pia, Alberto
    [J]. MATHEMATICAL PROGRAMMING, 2023, 198 (01) : 139 - 157
  • [3] Sparse PCA on fixed-rank matrices
    Alberto Del Pia
    [J]. Mathematical Programming, 2023, 198 : 139 - 157
  • [4] Regression on Fixed-Rank Positive Semidefinite Matrices: A Riemannian Approach
    Meyer, Gilles
    Bonnabel, Silvere
    Sepulchre, Rodolphe
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2011, 12 : 593 - 625
  • [5] Regression on fixed-rank positive semidefinite matrices: A Riemannian approach
    Meyer, Gilles
    Bonnabel, Silvère
    Sepulchre, Rodolphe
    [J]. Journal of Machine Learning Research, 2011, 12 : 593 - 625
  • [6] DISTRIBUTION OF RANK OF RANDOM MATRICES OVER A FINITE FIELD
    BALAKIN, GV
    [J]. THEORY OF PROBILITY AND ITS APPLICATIONS,USSR, 1968, 13 (04): : 594 - &
  • [7] Two Newton methods on the manifold of fixed-rank matrices endowed with Riemannian quotient geometries
    Absil, P-A
    Amodei, Luca
    Meyer, Gilles
    [J]. COMPUTATIONAL STATISTICS, 2014, 29 (3-4) : 569 - 590
  • [8] Two Newton methods on the manifold of fixed-rank matrices endowed with Riemannian quotient geometries
    P.-A. Absil
    Luca Amodei
    Gilles Meyer
    [J]. Computational Statistics, 2014, 29 : 569 - 590
  • [9] QUOTIENT GEOMETRY WITH SIMPLE GEODESICS FOR THE MANIFOLD OF FIXED-RANK POSITIVE-SEMIDEFINITE MATRICES
    Massart, Estelle
    Absil, P-A
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2020, 41 (01) : 171 - 198
  • [10] Curvature of the Manifold of Fixed-Rank Positive-Semidefinite Matrices Endowed with the Bures-Wasserstein Metric
    Massart, Estelle
    Hendrickx, Julien M.
    Absil, P-A
    [J]. GEOMETRIC SCIENCE OF INFORMATION, 2019, 11712 : 739 - 748