Two Newton methods on the manifold of fixed-rank matrices endowed with Riemannian quotient geometries

被引:0
|
作者
P.-A. Absil
Luca Amodei
Gilles Meyer
机构
[1] Université catholique de Louvain,Department of Mathematical Engineering, ICTEAM Institute
[2] Université Paul Sabatier,Institut de Mathématiques de Toulouse
[3] University of Liège,Department of Electrical Engineering and Computer Science
来源
Computational Statistics | 2014年 / 29卷
关键词
Fixed-rank manifold; Riemannian submersion; Levi-Civita connection; Riemannian connection; Riemannian exponential map; Geodesics;
D O I
暂无
中图分类号
学科分类号
摘要
We consider two Riemannian geometries for the manifold M(p,m×n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{M }(p,m\times n)}$$\end{document} of all m×n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m\times n$$\end{document} matrices of rank p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}. The geometries are induced on M(p,m×n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{M }(p,m\times n)}$$\end{document} by viewing it as the base manifold of the submersion π:(M,N)↦MNT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi :(M,N)\mapsto MN^\mathrm{T}$$\end{document}, selecting an adequate Riemannian metric on the total space, and turning π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document} into a Riemannian submersion. The theory of Riemannian submersions, an important tool in Riemannian geometry, makes it possible to obtain expressions for fundamental geometric objects on M(p,m×n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{M }(p,m\times n)}$$\end{document} and to formulate the Riemannian Newton methods on M(p,m×n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{M }(p,m\times n)}$$\end{document} induced by these two geometries. The Riemannian Newton methods admit a stronger and more streamlined convergence analysis than the Euclidean counterpart, and the computational overhead due to the Riemannian geometric machinery is shown to be mild. Potential applications include low-rank matrix completion and other low-rank matrix approximation problems.
引用
收藏
页码:569 / 590
页数:21
相关论文
共 19 条
  • [1] Two Newton methods on the manifold of fixed-rank matrices endowed with Riemannian quotient geometries
    Absil, P-A
    Amodei, Luca
    Meyer, Gilles
    [J]. COMPUTATIONAL STATISTICS, 2014, 29 (3-4) : 569 - 590
  • [2] On Geometric Connections of Embedded and Quotient Geometries in Riemannian Fixed-Rank Matrix Optimization
    Luo, Yuetian
    Li, Xudong
    Zhang, Anru R.
    [J]. MATHEMATICS OF OPERATIONS RESEARCH, 2023, 49 (02) : 782 - 825
  • [3] Fixed-Rank Supervised Metric Learning on Riemannian Manifold
    Mu, Yadong
    [J]. THIRTIETH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2016, : 1941 - 1947
  • [4] QUOTIENT GEOMETRY WITH SIMPLE GEODESICS FOR THE MANIFOLD OF FIXED-RANK POSITIVE-SEMIDEFINITE MATRICES
    Massart, Estelle
    Absil, P-A
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2020, 41 (01) : 171 - 198
  • [5] Curvature of the Manifold of Fixed-Rank Positive-Semidefinite Matrices Endowed with the Bures-Wasserstein Metric
    Massart, Estelle
    Hendrickx, Julien M.
    Absil, P-A
    [J]. GEOMETRIC SCIENCE OF INFORMATION, 2019, 11712 : 739 - 748
  • [6] Regression on Fixed-Rank Positive Semidefinite Matrices: A Riemannian Approach
    Meyer, Gilles
    Bonnabel, Silvere
    Sepulchre, Rodolphe
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2011, 12 : 593 - 625
  • [7] Regression on fixed-rank positive semidefinite matrices: A Riemannian approach
    Meyer, Gilles
    Bonnabel, Silvère
    Sepulchre, Rodolphe
    [J]. Journal of Machine Learning Research, 2011, 12 : 593 - 625
  • [8] Sparse PCA on fixed-rank matrices
    Del Pia, Alberto
    [J]. MATHEMATICAL PROGRAMMING, 2023, 198 (01) : 139 - 157
  • [9] Sparse PCA on fixed-rank matrices
    Alberto Del Pia
    [J]. Mathematical Programming, 2023, 198 : 139 - 157
  • [10] Fixed-Rank Rayleigh Quotient Maximization by an MPSK Sequence
    Kyrillidis, Anastasios
    Karystinos, George N.
    [J]. IEEE TRANSACTIONS ON COMMUNICATIONS, 2014, 62 (03) : 961 - 975