Generic Stability Implication From Full Information Estimation to Moving-Horizon Estimation

被引:5
|
作者
Hu, Wuhua [1 ]
机构
[1] Towngas Energy Investment Ltd, Shenzhen 518019, Peoples R China
关键词
Robust stability; State estimation; Stability criteria; Length measurement; Uncertainty; Nonlinear dynamical systems; Indexes; Disturbances; full information estimation (FIE); incremental input/output-to-state stability (i-IOSS); moving-horizon estimation (MHE); nonlinear systems; robust stability; state estimation; DISCRETE-TIME-SYSTEMS; STATE ESTIMATION; DETECTABILITY;
D O I
10.1109/TAC.2023.3277315
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Optimization-based state estimation is useful for handling of constrained linear or nonlinear dynamical systems. It has an ideal form, known as full information estimation (FIE), which uses all past measurements to perform state estimation, and also a practical counterpart, known as moving-horizon estimation (MHE), which uses most recent measurements of a limited length to perform the estimation. This work reveals a generic link from robust stability of FIE to that of MHE, showing that the former implies at least a weaker robust stability of MHE, which implements a long enough horizon. The implication strengthens to strict robust stability of MHE if the corresponding FIE satisfies a mild Lipschitz continuity condition. The revealed implications are then applied to derive new sufficient conditions for robust stability of MHE, which further reveals an intrinsic relation between the existence of a robustly stable FIE/MHE and the system being incrementally input/output-to-state stable.
引用
收藏
页码:1164 / 1170
页数:7
相关论文
共 50 条
  • [21] Distributed Moving-Horizon Estimation With Event-Triggered Communication Over Sensor Networks
    Yu, Dongdong
    Xia, Yuanqing
    Zhai, Di-Hua
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2023, 68 (12) : 7982 - 7988
  • [22] MIN-MAX MOVING-HORIZON ESTIMATION FOR UNCERTAIN DISCRETE-TIME LINEAR SYSTEMS
    Alessandri, A.
    Baglietto, M.
    Battistelli, G.
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2012, 50 (03) : 1439 - 1465
  • [23] A Lyapunov Function for Robust Stability of Moving Horizon Estimation
    Schiller, Julian D.
    Muntwiler, Simon
    Koehler, Johannes
    Zeilinger, Melanie N.
    Mueller, Matthias A.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2023, 68 (12) : 7466 - 7481
  • [24] Stability analysis of an approximate scheme for moving horizon estimation
    Zavala, Victor M.
    COMPUTERS & CHEMICAL ENGINEERING, 2010, 34 (10) : 1662 - 1670
  • [25] Anytime Proximity Moving Horizon Estimation: Stability and Regret
    Gharbi, Meriem
    Gharesifard, Bahman
    Ebenbauer, Christian
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2023, 68 (06) : 3393 - 3408
  • [26] Robust Global Exponential Stability for Moving Horizon Estimation
    Knuefer, Sven
    Mueller, Matthias A.
    2018 IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2018, : 3477 - 3482
  • [27] Maximum-likelihood arrival cost for moving-horizon estimation - Application to mammalian cell culture
    Santos-Navarro, Fernando N.
    Pimentel, Guilherme A.
    Dewasme, Laurent
    Vande Wouwer, Alain
    IFAC PAPERSONLINE, 2024, 58 (21): : 280 - 285
  • [28] ROBUST STABILITY OF FULL INFORMATION ESTIMATION
    Allan, Douglas A.
    Rawlings, James B.
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2021, 59 (05) : 3472 - 3497
  • [29] Minimum Energy Estimation and Moving Horizon Estimation
    Krener, Arthur J.
    2015 54TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2015, : 4952 - 4957
  • [30] Optimistic vs Pessimistic Moving-Horizon Estimation for Quasi-LPV Discrete-Time Systems
    Alessandri, A.
    Zasadzinski, M.
    Zemouche, A.
    IFAC PAPERSONLINE, 2020, 53 (02): : 5004 - 5009