Multiscale network based on feature fusion for fire disaster detection in complex scenes

被引:2
|
作者
Feng, Jian [1 ]
Sun, Yu [1 ]
机构
[1] Guangxi Univ, 100 East Univ Rd, Nanning 530004, Guangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Fire disaster detection; Multisclare spatial feature pooling; Dual branch attention; Dense connection; CONVOLUTIONAL NEURAL-NETWORKS; SMOKE DETECTION; VIDEO FIRE; SURVEILLANCE; MOTION; IMAGE;
D O I
10.1016/j.eswa.2023.122494
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
With the advent of high-resolution surveillance equipment, fire detection aimed at obtaining more detailed information has drawn considerable attention. The methods are based on convolutional neural networks (CNNs), which have been widely applied to automatically extract fire detection image features. However, the existing CNN-based fire detection methods are only designed for fixed-scale images. Thus, these methods are still difficult to use for fire detection due to the scale variation in the fire object and are infeasible for satisfying the requirement of various hardware of different scale images. In this paper, a fire disaster detection method that can deal with varied-scale images is proposed. First, the dense connection is used to enhance the information flow between different layers. Then, the groups channel attention is utilized to recalibrate the features. Finally, multiscale spatial feature pooling is employed to fuse different scale features. Specifically, the module allows us to predict different scale images. Experimental results demonstrate that the proposed method achieves 91.4 accuracy using fixed scale training, and 92.4 accuracy using multiscale training.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Complex Scenes Fire Object Detection Based on Feature Fusion and Channel Attention
    Cao, Xinrong
    Wu, Jincai
    Chen, Jian
    Li, Zuoyong
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2024,
  • [2] Traffic Sign Detection Based on Lightweight Multiscale Feature Fusion Network
    Lin, Shan
    Zhang, Zicheng
    Tao, Jie
    Zhang, Fan
    Fan, Xing
    Lu, Qingchang
    SUSTAINABILITY, 2022, 14 (21)
  • [3] Object Detection Algorithm for Complex Road Scenes Based on Adaptive Feature Fusion
    Ran, Xiansheng
    Su, Shanjie
    Chen, Junhao
    Zhang, Zhiyun
    Computer Engineering and Applications, 2023, 59 (24) : 216 - 226
  • [4] A Vision Enhancement and Feature Fusion Multiscale Detection Network
    Qian, Chengwu
    Qian, Jiangbo
    Wang, Chong
    Ye, Xulun
    Zhong, Caiming
    NEURAL PROCESSING LETTERS, 2024, 56 (01)
  • [5] A Vision Enhancement and Feature Fusion Multiscale Detection Network
    Chengwu Qian
    Jiangbo Qian
    Chong Wang
    Xulun Ye
    Caiming Zhong
    Neural Processing Letters, 56
  • [6] Object Detection For Remote Sensing Image Based on Multiscale Feature Fusion Network
    Tian Tingting
    Yang Jun
    LASER & OPTOELECTRONICS PROGRESS, 2022, 59 (16)
  • [7] Pulmonary Nodule Detection Based on Multiscale Feature Fusion
    Zhao, Yue
    Wang, Zhongyang
    Liu, Xinyao
    Chen, Qi
    Li, Chuangang
    Zhao, Hongshuo
    Wang, Zhiqiong
    Computational and Mathematical Methods in Medicine, 2022, 2022
  • [8] SAR Ship Detection Based on Convolutional Neural Network with Deep Multiscale Feature Fusion
    Long, Yang
    Juan, Su
    Hua, Huang
    Xiang, Li
    ACTA OPTICA SINICA, 2020, 40 (02)
  • [9] Pedestrian Detection Based on Feature Enhancement in Complex Scenes
    Su, Jiao
    An, Yi
    Wu, Jialin
    Zhang, Kai
    ALGORITHMS, 2024, 17 (01)
  • [10] Multiscale feature fusion network for monocular complex hand pose estimation
    Zhan, Zhi
    Luo, Guang
    ELECTRONICS LETTERS, 2023, 59 (24)