A Vision Enhancement and Feature Fusion Multiscale Detection Network

被引:0
|
作者
Chengwu Qian
Jiangbo Qian
Chong Wang
Xulun Ye
Caiming Zhong
机构
[1] Ningbo University,
来源
关键词
Object detection; Object occlusion; Swin transformer; Vision enhancement;
D O I
暂无
中图分类号
学科分类号
摘要
In the field of object detection, there is often a high level of occlusion in real scenes, which can very easily interfere with the accuracy of the detector. Currently, most detectors use a convolutional neural network (CNN) as a backbone network, but the robustness of CNNs for detection under cover is poor, and the absence of object pixels makes conventional convolution ineffective in extracting features, leading to a decrease in detection accuracy. To address these two problems, we propose VFN (A Vision Enhancement and Feature Fusion Multiscale Detection Network), which first builds a multiscale backbone network using different stages of the Swin Transformer, and then utilizes a vision enhancement module using dilated convolution to enhance the vision of feature points at different scales and address the problem of missing pixels. Finally, the feature guidance module enables features at each scale to be enhanced by fusing with each other. The total accuracy demonstrated by VFN on both the PASCAL VOC dataset and the CrowdHuman dataset is better than that of other methods, and its ability to find occluded objects is also better, demonstrating the effectiveness of our method.The code is available at https://github.com/qcw666/vfn.
引用
收藏
相关论文
共 50 条
  • [1] A Vision Enhancement and Feature Fusion Multiscale Detection Network
    Qian, Chengwu
    Qian, Jiangbo
    Wang, Chong
    Ye, Xulun
    Zhong, Caiming
    NEURAL PROCESSING LETTERS, 2024, 56 (01)
  • [2] AMFENet: An Adaptive Multiscale Feature Fusion Enhancement Network for Sinkhole Detection
    Zhu, Guodong
    Niu, Yunyun
    Ruan, Long
    Zhang, Xiaohao
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21 : 1 - 5
  • [3] ACMFNet: Asymmetric Convolutional Feature Enhancement and Multiscale Fusion Network for Change Detection
    Le, Weipeng
    Huang, Liang
    Tang, Bo-Hui
    Tian, Qiuyuan
    Wang, Min
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 6958 - 6971
  • [4] FAFFENet: frequency attention and feature fusion enhancement network for multiscale remote sensing target detection
    Zhang, Hao
    Liu, Feng
    Fan, Yingying
    Tan, Fuxiang
    Qian, Yurong
    JOURNAL OF APPLIED REMOTE SENSING, 2022, 16 (01)
  • [5] Underwater Image Enhancement Based on Generate Adversarial Network with Multiscale Feature Fusion
    Chen, Hui
    Wang, Shuo
    Xu, Jiachang
    Xiao, Zhexuan
    Computer Engineering and Applications, 2023, 59 (21) : 231 - 241
  • [6] A Deep Supervised Pavement Crack Detection Network with Multiscale Feature Fusion and Feature Learning
    Yang, Lei
    Huang, Hanyun
    Kong, Shuyi
    2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 1002 - 1007
  • [7] Traffic Sign Detection Based on Lightweight Multiscale Feature Fusion Network
    Lin, Shan
    Zhang, Zicheng
    Tao, Jie
    Zhang, Fan
    Fan, Xing
    Lu, Qingchang
    SUSTAINABILITY, 2022, 14 (21)
  • [8] Enhancement-fusion feature pyramid network for object detection
    Dong, Shifeng
    Wang, Rujing
    Du, Jianming
    Jiao, Lin
    JOURNAL OF ELECTRONIC IMAGING, 2023, 32 (01)
  • [9] A Small Object Detection Network Based on Multiple Feature Enhancement and Feature Fusion
    Tan K.
    Ding S.
    Wu S.
    Tian K.
    Ren J.
    Scientific Programming, 2023, 2023
  • [10] A Multiscale and Multidirection Feature Fusion Network for Road Detection From Satellite Imagery
    Wang, Yuchuan
    Tong, Ling
    Luo, Shiyu
    Xiao, Fanghong
    Yang, Jiaxing
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 18