Suppressing Li dendrite by a guar gum natural polymer film for high-performance lithium metal anodes

被引:2
|
作者
Fei, Guiqiang [1 ]
Du, Yifan [1 ]
Liu, Xuan [1 ]
Yin, Zheng [1 ]
Shu, Kewei [1 ]
Niu, Huizhu [1 ]
Han, Yun [1 ]
Wang, Yu [2 ]
Liu, Hui [3 ,5 ]
Wang, Haihua [1 ,4 ,6 ]
机构
[1] Shaanxi Univ Sci & Technol, Sch Chem & Chem Engn, Xian, Peoples R China
[2] Xian North Huian Chem Ind Co, Xian, Peoples R China
[3] Shaanxi Univ Sci & Technol, Sch Mat Sci & Engn, Xian, Peoples R China
[4] Korea Univ, Dept Mat Sci & Engn, Seoul, South Korea
[5] Shaanxi Univ Sci & Technol, Sch Mat Sci & Engn, Xuefu Rd, Xian 710021, Peoples R China
[6] Korea Univ, Dept Mat Sci & Engn, Seoul 02841, South Korea
基金
中国国家自然科学基金;
关键词
guar gum; lithium dendrites; lithium metal batteries; protective film; SEI; ELECTROLYTE; BATTERIES; GROWTH;
D O I
10.1002/app.55127
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Lithium dendrites pose a major hurdle for enhancing the energy density of lithium metal batteries, and the artificial solid electrolyte interface layer offers a potential solution. In this work, a cost-effective and environmentally friendly guar gum film is applied to the artificial protective layer. The guar gum artificial solid electrolyte interface (SEI) layer formed naturally, enriched with -OH and -AOA- groups, displayed exceptional electrochemical stability, and achieved an impressively high transference number of 0.88 for lithium-ion movement. In symmetric cells, the Li@GG-Cu anode displays remarkable cycling performance even during extended periods. This is evidenced by its ability to maintain a surface capacity of approximately 850 h (1 mA cm-2, 1 mAh cm-2). In addition, when utilizing a complete cell setup comprising a LiFPO4 cathode (weighing 1.5 mg cm-2) and anode coated with a guar gum film, the capacity retention of an impressive 96.2% showcases outstanding preservation of battery performance over time even after 700 cycles. This performance surpasses that of a lithium foil electrode (87.1%) and a copper anode with lithium deposition (0%). Our work exhibits a promising material for a novel configuration of artificial SEI, effectively stabilizing lithium metal anode. The Li@GG-Cu electrodes have good cycling performance in LiFePO4 batteries.image
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Guar gum: Structural and electrochemical characterization of natural polymer based binder for silicon-carbon composite rechargeable Li-ion battery anodes
    Kuruba, Ramalinga
    Datta, Moni Kanchan
    Damodaran, Krishnan
    Jampani, Prashanth H.
    Gattu, Bharat
    Patel, Prasad P.
    Shanthi, Pavithra M.
    Damle, Sameer
    Kumta, Prashant N.
    JOURNAL OF POWER SOURCES, 2015, 298 : 331 - 340
  • [32] A Rigid-Flexible Protecting Film with Surface Pits Structure for Dendrite-Free and High-Performance Lithium Metal Anode
    Yang, Di
    Li, Jian
    Yang, Fan
    Li, Jun
    He, Li
    Zhao, Hainan
    Wei, Luyao
    Wang, Yizhan
    Wang, Xudong
    Wei, Yingjin
    NANO LETTERS, 2021, 21 (16) : 7063 - 7069
  • [33] Natural Soft/Rigid Superlattices as Anodes for High-Performance Lithium-Ion Batteries
    Bai, Wei
    Gao, Jingyu
    Li, Kun
    Wang, Gongrui
    Zhou, Tengfei
    Li, Pengju
    Qin, Shengyong
    Zhang, Genqiang
    Guo, Zaiping
    Xiao, Chong
    Xie, Yi
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (40) : 17494 - 17498
  • [34] Dendrite-Free Lithium Metal Anodes in High Performance Lithium-Sulfur Batteries with Bifunctional Carbon Nanofiber Interlayers
    Wang, Zhenhua
    Wang, Xiaodong
    Sun, Wang
    Sun, Kening
    ELECTROCHIMICA ACTA, 2017, 252 : 127 - 137
  • [35] In-Situ Constructing A Heterogeneous Layer on Lithium Metal Anodes for Dendrite-Free Lithium Deposition and High Li-ion Flux
    Liu, Hong-Jun
    Yang, Cheng-Ye
    Han, Mei-Chen
    Yu, Chun-Yu
    Li, Xiaofeng
    Yu, Zhong-Zhen
    Qu, Jin
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (11)
  • [36] Suppressing lithium dendrite via hybrid interface layers for high performance quasi-solid-state lithium metal batteries
    Luo, Bi
    Wang, Qi
    Ji, Weijie
    Yu, Guihui
    Zhao, Zaowen
    Zhao, Ruirui
    Zhang, Bao
    Wang, Xiaowei
    Zhang, Jiafeng
    CHEMICAL ENGINEERING JOURNAL, 2024, 492
  • [37] Li-Compound Anodes: A Classification for High-Performance Li-Ion Battery Anodes
    Nam, Ki-Hun
    Jeong, Sangmin
    Yu, Byeong-Chul
    Choi, Jeong-Hee
    Jeon, Ki-Joon
    Park, Cheol-Min
    ACS NANO, 2022, 16 (09) : 13704 - 13714
  • [38] Towards high-performance lithium metal anodes via the modification of solid electrolyte interphases
    Hou, Zhen
    Zhang, Jiaolong
    Wang, Wenhui
    Chen, Qianwen
    Li, Baohua
    Li, Chaolin
    JOURNAL OF ENERGY CHEMISTRY, 2020, 45 : 7 - 17
  • [39] A lithiophilic AlN-modified copper layer for high-performance lithium metal anodes
    Xiong, Xiaosong
    Sun, Rui
    Yan, Wenqi
    Qiao, Qiao
    Zhu, Yusong
    Liu, Lili
    Fu, Lijun
    Yu, Nengfei
    Wu, Yuping
    Wang, Bin
    JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (26) : 13814 - 13820
  • [40] Towards high-performance lithium metal anodes via the modification of solid electrolyte interphases
    Zhen Hou
    Jiaolong Zhang
    Wenhui Wang
    Qianwen Chen
    Baohua Li
    Chaolin Li
    Journal of Energy Chemistry, 2020, 45 (06) : 7 - 17