A Powerful Prediction Framework of Fracture Parameters for Hydraulic Fracturing Incorporating eXtreme Gradient Boosting and Bayesian Optimization

被引:2
|
作者
Liu, Zhe [1 ,2 ]
Lei, Qun [1 ,2 ]
Weng, Dingwei [1 ,2 ]
Yang, Lifeng [1 ,2 ]
Wang, Xin [1 ,2 ]
Wang, Zhen [1 ,2 ]
Fan, Meng [1 ,2 ]
Wang, Jiulong [3 ]
机构
[1] CNPC Key Lab Oil & Gas Reservoir Stimulat, Langfang 065007, Peoples R China
[2] PetroChina, Res Inst Petr Explorat & Dev, Beijing 100083, Peoples R China
[3] Chinese Acad Sci, Comp Network Informat Ctr, Beijing 100083, Peoples R China
关键词
hydraulic fracture; fracture parameters; machine learning; eXtreme Gradient Boosting model; unconventional reservoir; ARTIFICIAL NEURAL-NETWORK; IDENTIFICATION; PROPAGATION; MODEL;
D O I
10.3390/en16237890
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In the last decade, low-quality unconventional oil and gas resources have become the primary source for domestic oil and gas storage and production, and hydraulic fracturing has become a crucial method for modifying unconventional reservoirs. This paper puts forward a framework for predicting hydraulic fracture parameters. It combines eXtreme Gradient Boosting and Bayesian optimization to explore data-driven machine learning techniques in fracture simulation models. Analyzing fracture propagation through mathematical models can be both time-consuming and costly under conventional conditions. In this study, we predicted the physical parameters and three-dimensional morphology of fractures across multiple time series. The physical parameters encompass fracture width, pressure, proppant concentration, and inflow capacity. Our results demonstrate that the fusion model applied can significantly improve fracture morphology prediction accuracy, exceeding 0.95, while simultaneously reducing computation time. This method enhances standard numerical calculation techniques used for predicting hydraulic fracturing while encouraging research on the extraction of unconventional oil and gas resources.
引用
收藏
页数:24
相关论文
共 46 条
  • [1] Extreme gradient boosting trees with efficient Bayesian optimization for profit-driven customer churn prediction
    Liu, Zhenkun
    Jiang, Ping
    Bock, Koen W. De
    Wang, Jianzhou
    Zhang, Lifang
    Niu, Xinsong
    TECHNOLOGICAL FORECASTING AND SOCIAL CHANGE, 2024, 198
  • [2] Prediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization
    Zhang, Wengang
    Wu, Chongzhi
    Zhong, Haiyi
    Li, Yongqin
    Wang, Lin
    GEOSCIENCE FRONTIERS, 2021, 12 (01) : 469 - 477
  • [3] A novel prediction method for coalbed methane production capacity combined extreme gradient boosting with bayesian optimization
    Du, Shuyi
    Wang, Meizhu
    Yang, Jiaosheng
    Zhao, Yang
    Wang, Jiulong
    Yue, Ming
    Xie, Chiyu
    Song, Hongqing
    COMPUTATIONAL GEOSCIENCES, 2023, 28 (5) : 781 - 790
  • [4] Bayesian optimization based random forest and extreme gradient boosting for the pavement density prediction in GPR detection
    Chen, Yifang
    Li, Feng
    Zhou, Siqi
    Zhang, Xiao
    Zhang, Song
    Zhang, Qiang
    Su, Yijie
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 387
  • [5] Prediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization
    Wengang Zhang
    Chongzhi Wu
    Haiyi Zhong
    Yongqin Li
    Lin Wang
    Geoscience Frontiers, 2021, 12 (01) : 469 - 477
  • [6] Prediction of hydraulic fracturing fracture parameters based on the study of reservoir rock geomechanics
    Agishev, E. R.
    Dubinsky, G. S.
    Mukhametshin, V. V.
    Bakhtizin, R. N.
    Andreev, V. E.
    Kuleshova, L. S.
    Vafin, T. R.
    JOURNAL OF LUMINESCENCE, 2023, 257 (04) : 107 - 116
  • [7] Coiled Tubing Erosion Prediction and Fracturing Fluid Parameters Optimization During Hydraulic Jet Fracturing
    Airong Xu
    Yihua Dou
    Changxing Feng
    Jie Zheng
    Xianke Cui
    Journal of Failure Analysis and Prevention, 2022, 22 : 1276 - 1292
  • [8] Coiled Tubing Erosion Prediction and Fracturing Fluid Parameters Optimization During Hydraulic Jet Fracturing
    Xu, Airong
    Dou, Yihua
    Feng, Changxing
    Zheng, Jie
    Cui, Xianke
    JOURNAL OF FAILURE ANALYSIS AND PREVENTION, 2022, 22 (03) : 1276 - 1292
  • [9] Optimization of tight gas reservoir fracturing parameters via gradient boosting regression modeling
    Yang, Huohai
    Liu, Xuanyu
    Chu, Xiangshu
    Xie, Binghong
    Zhu, Ge
    Li, Hancheng
    Yang, Jun
    HELIYON, 2024, 10 (05)
  • [10] Prediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization附视频
    Wengang Zhang
    Chongzhi Wu
    Haiyi Zhong
    Yongqin Li
    Lin Wang
    Geoscience Frontiers, 2021, (01) : 469 - 477