Utilizing industrial wastes in concretes solves environmental issues such as disposal, depletion of natural resources, and CO2 emission. In this research, fly ash (FA) and ceramic tile waste (CTW) were used in making concrete. FA was used as a partial replacement for cement (30%), and CTW was used as a partial to total replacement for fine aggregate (10-100%). According to the experimental findings, 30% substitution of FA increased the compressive strength (10.05%), tensile strength (9.15%), flexural strength (6.9%), and elastic modulus (9.4%). The optimal level of CTW substitution in fly ash concrete was found to be 40%. At this level, compressive strength, tensile strength, flexural strength, and elastic modulus were increased by 10.56%, 9.3%, 6.9%, and 8.86%, respectively. The fly ash concrete mix with 40% CTW had higher electrical resistivity and reduced water absorption. The environmental sustainability of concrete mixes, as assessed by the CO2 emissions, was found to be lower by 21.5% in fly ash concrete as compared to reference concrete. With 100% CTW addition, the emission was lowered by 3.8%. The preparation cost for fly ash mix with 40% CTW was 14% less than the reference concrete. As an outcome of this research, the fly ash concrete with 40% CTW can be used with the benefits of improved strength, durability, sustainability, and cost savings. Box-Behnken design (BBD) models were developed to estimate the mechanical properties of the CTW-incorporated fly ash concrete, and excellent correlations were obtained between the predicted and experimental values.Graphical abstractEffect of ceramic tile waste as fine aggregate in 30% fly ash additive concrete