A systematic study of the competitive sorption of per- and polyfluoroalkyl substances (PFAS) on colloidal activated carbon

被引:8
|
作者
Niarchos, Georgios [1 ,2 ]
Georgii, Linnea [1 ]
Ahrens, Lutz [2 ]
Kleja, Dan Berggren [3 ]
Fagerlund, Fritjof [1 ]
机构
[1] Uppsala Univ, Dept Earth Sci, POB 256, SE-75105 Uppsala, Sweden
[2] Swedish Univ Agr Sci SLU, Dept Aquat Sci & Assessment, POB 7050, SE-75007 Uppsala, Sweden
[3] Swedish Univ Agr Sci SLU, Dept Soil & Environm, POB 7090, SE-75007 Uppsala, Sweden
关键词
PFAS; CAC; Contamination; Remediation; Groundwater; Soil; Sorption; IN-SITU TREATMENT; PERFLUOROALKYL SUBSTANCES; PERFLUORINATED COMPOUNDS; ADSORPTION BEHAVIOR; WATER; ACIDS; MECHANISM; TRANSPORT; SOILS; PFOA;
D O I
10.1016/j.ecoenv.2023.115408
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Treatment of environmental media contaminated with per-and polyfluoroalkyl substances (PFAS) is crucial to mitigate mounting health risks associated with exposure. Colloidal activated carbon (CAC) has shown promise in treating contaminated soils, but understanding the interaction among PFAS during sorption is necessary for optimal remediation. This study investigated the extent to which PFAS of varying chain lengths and functional groups compete for sorption to CAC. Batch tests were conducted with natural soil and spiked water, using CAC at 0.2% w/w to remove seven PFAS with individual starting concentrations up to 0.05 mmol L-1. PFAS sorption to CAC was evaluated in three systems: a composite mixture of all studied compounds, a binary-solute system, and a single-solute system. The sorption experiments exhibited strong PFAS affinity to CAC, with removal rates between 41% and 100%, and solid/liquid partition coefficients (Kd) between 10 and 104 L kg-1. Differences were noticed among the various spiking mixtures, based on perfluorocarbon chain length, functional group, and the starting PFAS concentrations. Competition effects were detected when PFAS were in a multi-solute system, with an average 10% drop in removal, which can evidently become more relevant at higher concentrations, due to the observed non-linearity of the sorption process. The PFAS most vulnerable to competition effects in multi-solute systems were the short-chain perfluoropentanoic acid (PFPeA) and perfluorobutane sulfonic acid (PFBS), with an up to 25% reduction in removal. In bi-solute systems, perfluorooctane sulfonamide (FOSA) dominated over its ionisable counterparts, i.e. perfluorooctane sulfonic acid (PFOS) and perfluorononanoic acid (PFNA), indicating the importance of hydrophobic effects or layer formation in the sorption process. These results underscore the importance of considering competition in PFAS sorption processes when designing and implementing remediation techniques for PFAS-contaminated media.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Per- and polyfluoroalkyl substances (PFAS)-contaminants of emerging concern
    Baker, Erin S.
    Knappe, Detlef R. U.
    ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2022, 414 (03) : 1187 - 1188
  • [22] Consideration of pathways for immunotoxicity of per- and polyfluoroalkyl substances (PFAS)
    Veronika Ehrlich
    Wieneke Bil
    Rob Vandebriel
    Berit Granum
    Mirjam Luijten
    Birgitte Lindeman
    Philippe Grandjean
    Andreas-Marius Kaiser
    Ingrid Hauzenberger
    Christina Hartmann
    Claudia Gundacker
    Maria Uhl
    Environmental Health, 22
  • [23] Per- and polyfluoroalkyl substance (PFAS) retention by colloidal activated carbon (CAC) using dynamic column experiments
    Niarchos, Georgios
    Ahrens, Lutz
    Kleja, Dan Berggren
    Fagerlund, Fritjof
    ENVIRONMENTAL POLLUTION, 2022, 308
  • [24] Per- and polyfluoroalkyl substances (PFAS) in solar photovoltaic modules
    Nain, Preeti
    Anctil, Annick
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2025, 215
  • [25] Per- and polyfluoroalkyl substances (PFAS) on aquatic food products
    Ural, Gizem Nazli
    Topuz, Osman Kadir
    Unluesayin, Mustafa
    TOXIN REVIEWS, 2024,
  • [26] Per- and polyfluoroalkyl substances (PFAS) in sediment: a source of PFAS to the food web?
    Endicott, Douglas
    Silva-Wilkinson, Robin
    Mccauley, Dennis
    Armstrong, Brandon
    INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT, 2025,
  • [27] Causative mechanisms limiting the removal efficiency of short-chain per- and polyfluoroalkyl substances (PFAS) by activated carbon
    Han, Junho
    Choong, Choe Earn
    Jang, Min
    Lee, Junghee
    Hyun, Seunghun
    Lee, Won-Seok
    Kim, Minhee
    Chemosphere, 2024, 365
  • [28] An Integrated Approach for Determination of Total Per- and Polyfluoroalkyl Substances (PFAS)
    Shojaei, Marzieh
    Kumar, Naveen
    Guelfo, Jennifer L.
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2022, 56 (20) : 14517 - 14527
  • [29] Towards deployable electrochemical sensors for per- and polyfluoroalkyl substances (PFAS)
    Clark, Rebecca B.
    Dick, Jeffrey E.
    CHEMICAL COMMUNICATIONS, 2021, 57 (66) : 8121 - 8130
  • [30] Treatment technologies for removal of per- and polyfluoroalkyl substances (PFAS) in biosolids
    Garg, Anushka
    Shetti, Nagaraj P.
    Basu, Soumen
    Nadagouda, Mallikarjuna N.
    Aminabhavi, Tejraj M.
    CHEMICAL ENGINEERING JOURNAL, 2023, 453