Electrocatalytic reduction of CO2 with N/B co-doped reduced graphene oxide based catalysts

被引:1
|
作者
Cerrillo, Maria Isabel [1 ]
Jimenez, Carlos [1 ]
Ortiz, Miguel Aengel [1 ]
Camarillo, Rafael [1 ]
Rincon, Jesusa [1 ]
Martinez, Fabiola [1 ]
机构
[1] Univ Castilla La Mancha, Fac Environm Sci & Biochem, Dept Chem Engn, Toledo, Spain
关键词
Metal-free catalysts; Reduced graphene oxide; Electroreduction; Gas-phase CO 2 conversion; B and N co-doping; ELECTROCHEMICAL REDUCTION; HYDROGEN STORAGE; CU NANOPARTICLES; HIGHLY EFFICIENT; CARBON-DIOXIDE; BORON; NITROGEN; CONVERSION; ELECTROREDUCTION; ETHANOL;
D O I
10.1016/j.jiec.2023.06.039
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Metal based materials are frequently used in electrocatalytic processes for the mitigation of CO2 emissions, increasing the cost of the technology and the toxicity of the material. Metal-free catalysts appear as an interesting alternative. This work focusses on the synthesis of nitrogen and boron doped reduced graphene oxide (rGO) for the electrocatalytic reduction of CO2 in gas phase in continuous operation mode in a PEM type cell. The main reaction products observed have been formic acid and CO, being the first one mainly formed. Results obtained with rGONB have been compared with the undoped rGO and with copper-based catalysts (Cu/rGO and Cu/rGONB). The non-metal doped material (rGONB) is much more active in the CO2 electrocatalytic reduction as compared with the undoped material (rGO). The catalytic activity of rGONB is very similar to those obtained with Cu/rGO and Cu/rGONB catalysts, pointing out rGONB as a very promising material for the electrocatalytic reduction of CO2. This is especially relevant considering that rGONB has been tested in a relatively high geometric area (compared with most works in literature), in gas phase and in continuous operation mode, which is an important step to carry out the further scale-up of the process for industrial applications.(c) 2023 The Korean Society of Industrial and Engineering Chemistry. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:101 / 109
页数:9
相关论文
共 50 条
  • [21] Chemically grafting graphene oxide to B,N co-doped graphene via ionic liquid and their superior performance for triiodide reduction
    Yu, Chang
    Fang, Haiqiu
    Liu, Zhiqiang
    Hu, Han
    Meng, Xiangtong
    Qiu, Jieshan
    NANO ENERGY, 2016, 25 : 184 - 192
  • [22] Nitrogen, sulfur co-doped reduced graphene oxide: Synthesis and characterization
    Mannan M.A.
    Hirano Y.
    Quitain A.T.
    Koinuma M.
    Kida T.
    Micro and Nanosystems, 2020, 12 (02) : 129 - 134
  • [23] Controllable dispersion of cobalt phthalocyanine molecules on graphene oxide for enhanced electrocatalytic reduction of CO2 to CO
    Huang, Weifeng
    Li, Junqiang
    Xu, Xiao
    Cao, Aihui
    He, Ying
    SUn, Miao
    Kang, Longtian
    NEW JOURNAL OF CHEMISTRY, 2022, 46 (15) : 7153 - 7160
  • [24] Progress in the design of silver-based catalysts for electrocatalytic and photocatalytic CO2 reduction to CO
    Wei, Shuoming
    Deng, Yang
    Xu, Xinru
    Jiang, Xiao
    Liu, Bingsi
    Zhao, Chao
    Zhang, Zhen
    APPLIED CATALYSIS O: OPEN, 2024, 188
  • [25] Bismuth-Oxide-Decorated Graphene Oxide Hybrids for Catalytic and Electrocatalytic Reduction of CO2
    Mulik, Balaji B.
    Bankar, Balasaheb D.
    Munde, Ajay V.
    Biradar, Ankush V.
    Sathe, Bhaskar R.
    CHEMISTRY-A EUROPEAN JOURNAL, 2020, 26 (40) : 8801 - 8809
  • [26] Linkage Effect in the Heterogenization of Cobalt Complexes by Doped Graphene for Electrocatalytic CO2 Reduction
    Wang, Jiong
    Huang, Xiang
    Xi, Shibo
    Lee, Jong-Min
    Wang, Cheng
    Du, Yonghua
    Wang, Xin
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (38) : 13532 - 13539
  • [27] CuSn Alloy Nanoparticles on Nitrogen-Doped Graphene for Electrocatalytic CO2 Reduction
    Xiong, Wei
    Yang, Jian
    Shuai, Ling
    Hou, Yang
    Qiu, Ming
    Li, Xinyong
    Leung, Michael K. H.
    CHEMELECTROCHEM, 2019, 6 (24): : 5951 - 5957
  • [28] Mesoporous tin oxide for electrocatalytic CO2 reduction
    Ge, Hongtao
    Gu, Zhengxiang
    Han, Peng
    Shen, Hanchen
    Al-Enizi, Abdullah M.
    Zhang, Lijuan
    Zheng, Gengfeng
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2018, 531 : 564 - 569
  • [29] Highly selective CO2 adsorption of ZnO based N-doped reduced graphene oxide porous nanomaterial
    Li, Weidong
    Yang, Huayun
    Jiang, Xia
    Liu, Qi
    APPLIED SURFACE SCIENCE, 2016, 360 : 143 - 147
  • [30] Coupled Metal/Oxide Catalysts with Tunable Product Selectivity for Electrocatalytic CO2 Reduction
    Huo, Shengjuan
    Weng, Zhe
    Wu, Zishan
    Zhong, Yiren
    Wu, Yueshen
    Fang, Jianhui
    Wang, Hailiang
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (34) : 28519 - 28526