Existence and uniqueness for a convective phase change model with temperature-dependent viscosity

被引:2
|
作者
Belhamadia, Y. [1 ]
Deteix, J. [2 ]
Jaffal-Mourtada, B. [3 ]
Yakoubi, D. [3 ]
机构
[1] Amer Univ Sharjah, Dept Math & Stat, Sharjah, U Arab Emirates
[2] Univ Laval, Grp Interdisciplinaire Rech Elements Finis Univ La, Dept Math & Stat, Quebec City, PQ, Canada
[3] Leonard Vinci Pole Univ, Res Ctr, F-92916 Paris, France
基金
加拿大自然科学与工程研究理事会;
关键词
Phase change problems; Convection; Enthalpy formulation; Fixed point method; Stability and convergence; HEAT-TRANSFER;
D O I
10.1016/j.jmaa.2023.127559
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we consider a class of phase change model with temperature- dependent viscosity, convection and mixed boundary conditions on a bounded domain that reflect melting and solidification in a variety of real-world applications, such as metal casting and crystal growth. The mathematical model, which is based on the enthalpy formulation, takes into consideration the thermophysical differences between the liquid and solid states. The moving liquid-solid interface is explicitly fulfilled as the energy and momentum equations are solved over the full physical domain. Under particular assumptions, we derive various a priori estimates and prove well-posedness results. Numerical simulation of the model employed in the paper is presented as an illustration of an example of a melting problem.& COPY; 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Temperature-dependent viscosity model of HPAM polymer through high-temperature reservoirs
    Choi, ByungIn
    Jeong, Moon Sik
    Lee, Kun Sang
    POLYMER DEGRADATION AND STABILITY, 2014, 110 : 225 - 231
  • [32] Simulation of phase separation with temperature-dependent viscosity using lattice Boltzmann method
    Wang, Heping
    Zang, Duyang
    Li, Xiaoguang
    Geng, Xingguo
    EUROPEAN PHYSICAL JOURNAL E, 2017, 40 (12):
  • [33] Simulation of phase separation with temperature-dependent viscosity using lattice Boltzmann method
    Heping Wang
    Duyang Zang
    Xiaoguang Li
    Xingguo Geng
    The European Physical Journal E, 2017, 40
  • [34] Effect of temperature-dependent viscosity on mantle convection
    Kuslits, Lukacs Benedek
    Farkas, Marton Pal
    Galsa, Attila
    ACTA GEODAETICA ET GEOPHYSICA, 2014, 49 (03) : 249 - 263
  • [35] BEHAVIOR OF THERMOVISCOELASTIC FLUIDS WITH TEMPERATURE-DEPENDENT VISCOSITY
    CHARALAMBAKIS, N
    HOUSTIS, E
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1986, 66 (05): : T364 - T365
  • [36] NONLINEAR COUETTE FLOWS WITH TEMPERATURE-DEPENDENT VISCOSITY
    NIHOUL, JCJ
    PHYSICS OF FLUIDS, 1970, 13 (01) : 203 - &
  • [37] Effect of temperature-dependent viscosity on mantle convection
    Lukács Benedek Kuslits
    Márton Pál Farkas
    Attila Galsa
    Acta Geodaetica et Geophysica, 2014, 49 : 249 - 263
  • [38] CONVECTION IN A POROUS LAYER FOR A TEMPERATURE-DEPENDENT VISCOSITY
    BLYTHE, PA
    SIMPKINS, PG
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1981, 24 (03) : 497 - 506
  • [39] A NEW FRACTIONAL MODEL FOR CONVECTIVE STRAIGHT FINS WITH TEMPERATURE-DEPENDENT THERMAL CONDUCTIVITY
    Kumar, Devendra
    Singh, Jagdev
    Baleanu, Dumitru
    THERMAL SCIENCE, 2018, 22 (06): : 2791 - 2802