STABILITY AND CONVERGENCE ANALYSIS OF A FULLY DISCRETE SEMI-IMPLICIT SCHEME FOR STOCHASTIC ALLEN-CAHN EQUATIONS WITH MULTIPLICATIVE NOISE
被引:2
|
作者:
Huang, Can
论文数: 0引用数: 0
h-index: 0
机构:
Xiamen Univ, Sch Math Sci, Xiamen, Peoples R China
Xiamen Univ, Fujian Prov Key Lab Math Modeling & High Performan, Xiamen, Peoples R ChinaXiamen Univ, Sch Math Sci, Xiamen, Peoples R China
Huang, Can
[1
,2
]
Shen, Jie
论文数: 0引用数: 0
h-index: 0
机构:
Eastern Inst Technol, Eastern Inst Adv Study, Ningbo 315200, Zhejiang, Peoples R China
Purdue Univ, Dept Math, W Lafayette, IN USAXiamen Univ, Sch Math Sci, Xiamen, Peoples R China
Shen, Jie
[3
,4
]
机构:
[1] Xiamen Univ, Sch Math Sci, Xiamen, Peoples R China
[2] Xiamen Univ, Fujian Prov Key Lab Math Modeling & High Performan, Xiamen, Peoples R China
[3] Eastern Inst Technol, Eastern Inst Adv Study, Ningbo 315200, Zhejiang, Peoples R China
. We consider a fully discrete scheme for stochastic Allen-Cahn equation in a multi-dimensional setting. Our method uses a polynomial based spectral method in space, so it does not require the elliptic operator A and the covariance operator Q of noise in the equation commute, and thus successfully alleviates a restriction of Fourier spectral method for stochastic partial differential equations pointed out by Jentzen, Kloeden and Winkel [Ann. Appl. Probab. 21 (2011), pp. 908-950]. The discretization in time is a tamed semi-implicit scheme which treats the nonlinear term explicitly while being unconditionally stable. Under regular assumptions which are usually made for SPDEs, we establish strong convergence rates in the one spatial dimension for our fully discrete scheme. We also present numerical experiments which are consistent with our theoretical results.
机构:
Hunan Normal Univ, Sch Math & Stat, MOE LCSM, Changsha 410081, Hunan, Peoples R ChinaHunan Normal Univ, Sch Math & Stat, MOE LCSM, Changsha 410081, Hunan, Peoples R China
Wang, Jiangxing
Pan, Kejia
论文数: 0引用数: 0
h-index: 0
机构:
Cent South Univ, Sch Math & Stat, HNP LAMA, Changsha 410083, Peoples R ChinaHunan Normal Univ, Sch Math & Stat, MOE LCSM, Changsha 410081, Hunan, Peoples R China
Pan, Kejia
Yang, Xiaofeng
论文数: 0引用数: 0
h-index: 0
机构:
Univ South Carolina, Dept Math, Columbia, SC 29208 USAHunan Normal Univ, Sch Math & Stat, MOE LCSM, Changsha 410081, Hunan, Peoples R China
机构:
Xiamen Univ, Sch Math Sci, Xiamen 361005, Fujian, Peoples R China
Xiamen Univ, Fujian Prov Key Lab Math Modeling & High Performan, Xiamen 361005, Fujian, Peoples R ChinaXiamen Univ, Sch Math Sci, Xiamen 361005, Fujian, Peoples R China
Xiang, Yahong
Huang, Can
论文数: 0引用数: 0
h-index: 0
机构:
Xiamen Univ, Sch Math Sci, Xiamen 361005, Fujian, Peoples R China
Xiamen Univ, Fujian Prov Key Lab Math Modeling & High Performan, Xiamen 361005, Fujian, Peoples R ChinaXiamen Univ, Sch Math Sci, Xiamen 361005, Fujian, Peoples R China
Huang, Can
Chen, Huangxin
论文数: 0引用数: 0
h-index: 0
机构:
Xiamen Univ, Sch Math Sci, Xiamen 361005, Fujian, Peoples R China
Xiamen Univ, Fujian Prov Key Lab Math Modeling & High Performan, Xiamen 361005, Fujian, Peoples R ChinaXiamen Univ, Sch Math Sci, Xiamen 361005, Fujian, Peoples R China
机构:
Cent S Univ, Sch Math Sci & Comp Technol, Changsha 410075, Hunan, Peoples R ChinaCent S Univ, Sch Math Sci & Comp Technol, Changsha 410075, Hunan, Peoples R China
Wang, Xiaojie
Gan, Siqing
论文数: 0引用数: 0
h-index: 0
机构:
Cent S Univ, Sch Math Sci & Comp Technol, Changsha 410075, Hunan, Peoples R ChinaCent S Univ, Sch Math Sci & Comp Technol, Changsha 410075, Hunan, Peoples R China
Gan, Siqing
Wang, Desheng
论文数: 0引用数: 0
h-index: 0
机构:
Nanyang Technol Univ, Sch Phys & Math Sci, Div Math Sci, Singapore 637371, SingaporeCent S Univ, Sch Math Sci & Comp Technol, Changsha 410075, Hunan, Peoples R China