Machine learning techniques in magnetic levitation problems

被引:0
|
作者
Arrayas, Manuel [1 ]
Trueba, Jose L. [1 ]
Uriarte, Carlos [1 ]
机构
[1] Univ Rey Juan Carlos, Area Electromagnetismo, Tulipdn S-N, Madrid 28933, Spain
关键词
Magnetic levitation; Machine learning; Stability regions;
D O I
10.1016/j.chaos.2022.113043
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a method for calculating the stability region of a perfect diamagnet levitated in a magnetic field created by a circular current loop making use of the machine learning techniques. As an application we compute stability regions, points of stable equilibrium and stable oscillatory motions in two chip-based superconducting trap architectures used to levitate superconducting particles. Our procedure is an alternative to a full numerical scheme based on finite element methods which are expensive to implement for optimizing experimental parameters.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Investigation of magnetic flux dynamics in the bulk HTS with the levitation techniques
    Kordyuk, A.A.
    Nemoshkalenko, V.V.
    Viznichenko, R.V.
    Gawalek, W.
    Materials science & engineering. B, Solid-state materials for advanced technology, 1998, B53 (1-2): : 174 - 176
  • [22] Prediction of Mental Health Problems Among Children Using Machine Learning Techniques
    Sumathi, M. R.
    Poorna, B.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2016, 7 (01) : 552 - 557
  • [23] Machine learning: Developing learning problems
    Tonic, Edward
    WMSCI 2006: 10TH WORLD MULTI-CONFERENCE ON SYSTEMICS, CYBERNETICS AND INFORMATICS, VOL IV, PROCEEDINGS, 2006, : 74 - 76
  • [24] Systematic literature review: Machine learning techniques (machine learning)
    Alfaro, Anderson Damian Jimenez
    Ospina, Jose Vicente Diaz
    CUADERNO ACTIVA, 2021, (13): : 113 - 121
  • [25] Machine Learning Techniques for the Analysis of Magnetic Flux Leakage Images in Pipeline Inspection
    Khodayari-Rostamabad, Ahmad
    Reilly, James P.
    Nikolova, Natalia K.
    Hare, James R.
    Pasha, Sabir
    IEEE TRANSACTIONS ON MAGNETICS, 2009, 45 (08) : 3073 - 3084
  • [26] An Automatic Classification of Magnetic Resonance Brain Images Using Machine Learning Techniques
    Murugan, R.
    PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON COMMUNICATION, DEVICES AND COMPUTING, 2020, 602 : 463 - 472
  • [27] Machine Learning Techniques in Storm
    Han, Zhijie
    Xu, Miaoxin
    2015 SEVENTH INTERNATIONAL SYMPOSIUM ON PARALLEL ARCHITECTURES, ALGORITHMS AND PROGRAMMING (PAAP), 2015, : 139 - 142
  • [28] Machine Learning Techniques for Accountability
    Kim, Been
    Doshi-Velez, Finale
    AI MAGAZINE, 2021, 42 (01) : 47 - 52
  • [29] Forecasting with Machine Learning Techniques
    Hussain, Walayat
    Alkalbani, Asma Musabah
    Gao, Honghao
    FORECASTING, 2021, 3 (04): : 868 - 869
  • [30] Machine Learning Techniques: A Survey
    Kour, Herleen
    Gondhi, Naveen
    INNOVATIVE DATA COMMUNICATION TECHNOLOGIES AND APPLICATION, 2020, 46 : 266 - 275