Bounds for the sum of distances of spherical sets of small size

被引:1
|
作者
Barg, Alexander [1 ]
Boyvalenkov, Peter [2 ]
Stoyanova, Maya [3 ]
机构
[1] Univ Maryland, Dept ECE & ISR, College Pk, MD 20742 USA
[2] Bulgarian Acad Sci, Inst Math & Informat, 8 G Bonchev Str, Sofia 1113, Bulgaria
[3] Sofia Univ St Kliment Ohridski, Fac Math & Informat, 5 James Bourchier Blvd, Sofia 1164, Bulgaria
关键词
Spherical set; Linear programming bound; Universal energy bound; BINARY LINEAR CODES; EQUIANGULAR LINES; ENERGY; POINTS; DISTRIBUTIONS; ASYMPTOTICS;
D O I
10.1016/j.disc.2023.113346
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We derive upper and lower bounds on the sum of distances of a spherical code of size N in n dimensions when N = O(n alpha), 0 < alpha 2. The bounds are derived by specializing recent general, universal bounds on energy of spherical sets. We discuss asymptotic behavior of our bounds along with several examples of codes whose sum of distances closely follows the upper bound.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Sum-sets of small upper density
    Bordes, G
    ACTA ARITHMETICA, 2005, 119 (02) : 187 - 200
  • [22] Small maximal sum-free sets
    Giudici, Michael
    Hart, Sarah
    ELECTRONIC JOURNAL OF COMBINATORICS, 2009, 16 (01):
  • [23] SMALL SUM SETS AND THE FABER GAP CONDITION
    DRESSLER, RE
    PIGNO, L
    ACTA SCIENTIARUM MATHEMATICARUM, 1984, 47 (1-2): : 233 - 237
  • [24] The sum-product problem for small sets
    Clevenger, Ginny Ray
    Havard, Haley
    Heard, Patch
    Lott, Andrew
    Rice, Alex
    Wilson, Brittany
    INVOLVE, A JOURNAL OF MATHEMATICS, 2025, 18 (01):
  • [25] ZERO-SUM FREE SETS WITH SMALL SUM-SET
    Bhowmik, Gautami
    Halupczok, Immanuel
    Schlage-Puchta, Jan-Christoph
    MATHEMATICS OF COMPUTATION, 2011, 80 (276) : 2253 - 2258
  • [26] Semidefinite programming bounds for spherical three-distance sets
    Liu, Feng-Yuan
    Yu, Wei-Hsuan
    ELECTRONIC JOURNAL OF COMBINATORICS, 2024, 31 (04):
  • [27] Sets of binary sequences with small total Hamming distances
    Abdel-Ghaffar, Khaled A. S.
    INFORMATION PROCESSING LETTERS, 2019, 142 : 27 - 29
  • [29] The small hexagon and heptagon with maximum sum of distances between vertices
    Audet, Charles
    Guillou, Anthony
    Hansen, Pierre
    Messine, Frederic
    Perron, Sylvain
    JOURNAL OF GLOBAL OPTIMIZATION, 2011, 49 (03) : 467 - 480
  • [30] The small hexagon and heptagon with maximum sum of distances between vertices
    Charles Audet
    Anthony Guillou
    Pierre Hansen
    Frédéric Messine
    Sylvain Perron
    Journal of Global Optimization, 2011, 49 : 467 - 480