Bounds for the sum of distances of spherical sets of small size

被引:1
|
作者
Barg, Alexander [1 ]
Boyvalenkov, Peter [2 ]
Stoyanova, Maya [3 ]
机构
[1] Univ Maryland, Dept ECE & ISR, College Pk, MD 20742 USA
[2] Bulgarian Acad Sci, Inst Math & Informat, 8 G Bonchev Str, Sofia 1113, Bulgaria
[3] Sofia Univ St Kliment Ohridski, Fac Math & Informat, 5 James Bourchier Blvd, Sofia 1164, Bulgaria
关键词
Spherical set; Linear programming bound; Universal energy bound; BINARY LINEAR CODES; EQUIANGULAR LINES; ENERGY; POINTS; DISTRIBUTIONS; ASYMPTOTICS;
D O I
10.1016/j.disc.2023.113346
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We derive upper and lower bounds on the sum of distances of a spherical code of size N in n dimensions when N = O(n alpha), 0 < alpha 2. The bounds are derived by specializing recent general, universal bounds on energy of spherical sets. We discuss asymptotic behavior of our bounds along with several examples of codes whose sum of distances closely follows the upper bound.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Bounds on sets with few distances
    Barg, Alexander
    Musin, Oleg R.
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2011, 118 (04) : 1465 - 1474
  • [2] On the Minkowski distances and products of sum sets
    Roche-Newton, Oliver
    Rudnev, Misha
    ISRAEL JOURNAL OF MATHEMATICS, 2015, 209 (02) : 507 - 526
  • [3] On the Minkowski distances and products of sum sets
    Oliver Roche-Newton
    Misha Rudnev
    Israel Journal of Mathematics, 2015, 209 : 507 - 526
  • [4] Lower bounds for the sum of small-size algebraic branching programs
    Bhargav, C.S.
    Dwivedi, Prateek
    Saxena, Nitin
    Theoretical Computer Science, 2025, 1041
  • [5] Lower Bounds for the Sum of Small-Size Algebraic Branching Programs
    Bhargav, C. S.
    Dwivedi, Prateek
    Saxena, Nitin
    THEORY AND APPLICATIONS OF MODELS OF COMPUTATION, TAMC 2024, 2024, 14637 : 355 - 366
  • [6] Intuitionistic Fuzzy Sets: Spherical Representation and Distances
    Yang, Y.
    Chiclana, F.
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2009, 24 (04) : 399 - 420
  • [7] ON THE SUM OF POWERED DISTANCES TO CERTAIN SETS OF POINTS ON THE CIRCLE
    Nikolov, Nikolai
    Rafailov, Rafael
    PACIFIC JOURNAL OF MATHEMATICS, 2011, 253 (01) : 157 - 168
  • [8] Better Bounds for Planar Sets Avoiding Unit Distances
    Tamás Keleti
    Máté Matolcsi
    Fernando Mário de Oliveira Filho
    Imre Z. Ruzsa
    Discrete & Computational Geometry, 2016, 55 : 642 - 661
  • [9] Better Bounds for Planar Sets Avoiding Unit Distances
    Keleti, Tamas
    Matolcsi, Mate
    de Oliveira Filho, Fernando Mario
    Ruzsa, Imre Z.
    DISCRETE & COMPUTATIONAL GEOMETRY, 2016, 55 (03) : 642 - 661
  • [10] On sets with a small subset sum
    Hamidoune, YO
    Lladó, AS
    Serra, O
    COMBINATORICS PROBABILITY & COMPUTING, 1999, 8 (05): : 461 - 466