Contrastive Learning of View-invariant Representations for Facial Expressions Recognition

被引:0
|
作者
Roy, Shuvendu [1 ,2 ]
Etemad, Ali [1 ,2 ]
机构
[1] Queens Univ, Dept ECE, Kingston, ON, Canada
[2] Queens Univ, Ingenu Labs Res Inst, Kingston, ON, Canada
关键词
Affective computing; contrastive learning; expression recognition; FIELD-BASED FACE; MULTIVIEW;
D O I
10.1145/3632960
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Although there has been much progress in the area of facial expression recognition (FER), most existing methods suffer when presented with images that have been captured from viewing angles that are non-frontal and substantially different from those used in the training process. In this article, we propose ViewFX, a novel view-invariant FER framework based on contrastive learning, capable of accurately classifying facial expressions regardless of the input viewing angles during inference. ViewFX learns view-invariant features of expression using a proposed self-supervised contrastive loss, which brings together different views of the same subject with a particular expression in the embedding space. We also introduce a supervised contrastive loss to push the learned view-invariant features of each expression away from other expressions. Since facial expressions are often distinguished with very subtle differences in the learned feature space, we incorporate the Barlow twins loss to reduce the redundancy and correlations of the representations in the learned representations. The proposed method is a substantial extension of our previously proposed CL-MEx, which only had a self-supervised loss. We test the proposed framework on two public multi-view facial expression recognition datasets, KDEF and DDCF. The experiments demonstrate that our approach outperforms previous works in the area and sets a new state-of-the-art for both datasets while showing considerably less sensitivity to challenging angles and the number of output labels used for training. We also perform detailed sensitivity and ablation experiments to evaluate the impact of different components of our model as well as its sensitivity to different parameters.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] A New View-Invariant Feature for Cross-View Gait Recognition
    Kusakunniran, Worapan
    Wu, Qiang
    Zhang, Jian
    Ma, Yi
    Li, Hongdong
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2013, 8 (10) : 1642 - 1653
  • [32] Fast and Robust Framework for View-invariant Gait Recognition
    Jia, Ning
    Li, Chang-Tsun
    Sanchez, Victor
    Liew, Alan Wee-Chung
    2017 5TH INTERNATIONAL WORKSHOP ON BIOMETRICS AND FORENSICS (IWBF 2017), 2017,
  • [33] On Temporal Order Invariance for View-Invariant Action Recognition
    Anwaar-ul-Haq
    Gondal, Iqbal
    Murshed, Manzur
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2013, 23 (02) : 203 - 211
  • [34] A survey about view-invariant human action recognition
    Nghia Pham Trong
    Anh Truong Minh
    Nguyen, Hung
    Kazunori, Kotani
    Bac Le Hoai
    2017 56TH ANNUAL CONFERENCE OF THE SOCIETY OF INSTRUMENT AND CONTROL ENGINEERS OF JAPAN (SICE), 2017, : 699 - 704
  • [35] Evaluating Manifold Learning Methods and Discriminative Sequence Classifiers in View-Invariant Action Recognition
    Cilla, Rodrigo
    Patricio, Miguel A.
    Berlanga, Antonio
    Molina, Jose M.
    USER-CENTRIC TECHNOLOGIES AND APPLICATIONS, 2011, 94 : 11 - 18
  • [36] View-invariant human action recognition via robust locally adaptive multi-view learning
    Jia-geng Feng
    Jun Xiao
    Frontiers of Information Technology & Electronic Engineering, 2015, 16 : 917 - 929
  • [37] Spatiotemporal Contrastive Learning of Facial Expressions in Videos
    Roy, Shuvendu
    Etemad, Ali
    2021 9TH INTERNATIONAL CONFERENCE ON AFFECTIVE COMPUTING AND INTELLIGENT INTERACTION (ACII), 2021,
  • [38] View-invariant human action recognition via robust locally adaptive multi-view learning
    Feng, Jia-geng
    Xiao, Jun
    FRONTIERS OF INFORMATION TECHNOLOGY & ELECTRONIC ENGINEERING, 2015, 16 (11) : 917 - 929
  • [39] View-Invariant Gait Recognition Through Genetic Template Segmentation
    Isaac, Ebenezer R. H. P.
    Elias, Susan
    Rajagopalan, Srinivasan
    Easwarakumar, K. S.
    IEEE SIGNAL PROCESSING LETTERS, 2017, 24 (08) : 1188 - 1192
  • [40] Dual-attention Network for View-invariant Action Recognition
    Gedamu Alemu Kumie
    Maregu Assefa Habtie
    Tewodros Alemu Ayall
    Changjun Zhou
    Huawen Liu
    Abegaz Mohammed Seid
    Aiman Erbad
    Complex & Intelligent Systems, 2024, 10 : 305 - 321