Sequentially-trained, Shallow Neural Networks for Real-time 3D Odometry

被引:0
|
作者
Rodriguez, Frank [1 ]
Muminov, Baurzhan [1 ]
Vuong, Luat T. [1 ]
机构
[1] Univ Calif Riverside, Dept Mech Engn, Riverside, CA 92521 USA
关键词
Machine vision; visual odometry; predictive vision; data preprocessing; spatial disparity; spectral methods; feature extraction; optical flow; VISUAL ODOMETRY; IMAGE REGISTRATION;
D O I
10.1117/12.3005250
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Fourier-domain correlation approaches have been successful in a variety of image comparison approaches but fail when the scenes, patterns, or objects in the images are distorted. Here, we utilize the sequential training of shallow neural networks on Fourier-preprocessed video to infer 3-D movement. The bio-inspired pipeline learns x, y, and z-direction movement from high-frame-rate, low-resolution, Fourier-domain preprocessed inputs (either cross power spectra or phase correlation data). Our pipeline leverages the high sensitivity of Fourier methods in a manner that is resilient to the parallax distortion of a forward-facing camera. Via sequential training over several path trajectories, models generalize to predict the 3-D movement in unseen trajectory environments. Models with no hidden layer are less accurate initially but converge faster with sequential training over different flightpaths. Our results show important considerations and trade-offs between input data preprocessing (compression) and model complexity (convergence).
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Real-time 3D facility monitoring
    不详
    HYDROCARBON PROCESSING, 2007, 86 (04): : 30 - 30
  • [32] Real-time stereo 3D ultrasound
    Noble, Joanna R.
    Fronheiser, Matthew P.
    Smith, Stephen W.
    ULTRASONIC IMAGING, 2006, 28 (04) : 245 - 254
  • [33] Real-time 3D rendering with hatching
    Suarez, Jordane
    Belhadj, Fares
    Boyer, Vincent
    VISUAL COMPUTER, 2017, 33 (10): : 1319 - 1334
  • [34] Real-time 3D Indoor Localization
    Jaworski, Wojciech
    Wilk, Pawel
    Zborowski, Pawel
    Chmielowiec, Witold
    Lee, Andrew YongGwon
    Kumar, Abhishek
    2017 INTERNATIONAL CONFERENCE ON INDOOR POSITIONING AND INDOOR NAVIGATION (IPIN), 2017,
  • [35] Real-time 3D transesophageal echocardiography
    Pua, EC
    Idriss, SF
    Wolf, PD
    Smith, SW
    ULTRASONIC IMAGING, 2004, 26 (04) : 217 - 232
  • [36] Real-time 3D ladar imaging
    Cho, Peter
    Anderson, Hyrum
    Hatch, Robert
    Ramaswami, Prern
    SIGNAL PROCESSING, SENSOR FUSION, AND TARGET RECOGNITION XV, 2006, 6235
  • [37] Real-Time 3D Fusion Echocardiography
    Szmigielski, Cezary
    Rajpoot, Kashif
    Grau, Vicente
    Myerson, Saul G.
    Holloway, Cameron
    Noble, J. Alison
    Kerber, Richard
    Becher, Harald
    JACC-CARDIOVASCULAR IMAGING, 2010, 3 (07) : 682 - 690
  • [38] Real-Time 3D Mapping with Visual-Inertial Odometry Pose Coupled with Localization in an Occupancy Map
    Szklarski, Jacek
    Ziemiecki, Cezary
    Szaltys, Jacek
    Ostrowski, Marian
    AUTOMATION 2019: PROGRESS IN AUTOMATION, ROBOTICS AND MEASUREMENT TECHNIQUES, 2020, 920 : 388 - 397
  • [39] 3DFCNN: real-time action recognition using 3D deep neural networks with raw depth information
    Sanchez-Caballero, Adrian
    de Lopez-Diz, Sergio
    Fuentes-Jimenez, David
    Losada-Gutierrez, Cristina
    Marron-Romera, Marta
    Casillas-Perez, David
    Sarker, Mohammad Ibrahim
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (17) : 24119 - 24143
  • [40] 3DFCNN: real-time action recognition using 3D deep neural networks with raw depth information
    Adrián Sánchez-Caballero
    Sergio de López-Diz
    David Fuentes-Jimenez
    Cristina Losada-Gutiérrez
    Marta Marrón-Romera
    David Casillas-Pérez
    Mohammad Ibrahim Sarker
    Multimedia Tools and Applications, 2022, 81 : 24119 - 24143