Sequentially-trained, Shallow Neural Networks for Real-time 3D Odometry

被引:0
|
作者
Rodriguez, Frank [1 ]
Muminov, Baurzhan [1 ]
Vuong, Luat T. [1 ]
机构
[1] Univ Calif Riverside, Dept Mech Engn, Riverside, CA 92521 USA
关键词
Machine vision; visual odometry; predictive vision; data preprocessing; spatial disparity; spectral methods; feature extraction; optical flow; VISUAL ODOMETRY; IMAGE REGISTRATION;
D O I
10.1117/12.3005250
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Fourier-domain correlation approaches have been successful in a variety of image comparison approaches but fail when the scenes, patterns, or objects in the images are distorted. Here, we utilize the sequential training of shallow neural networks on Fourier-preprocessed video to infer 3-D movement. The bio-inspired pipeline learns x, y, and z-direction movement from high-frame-rate, low-resolution, Fourier-domain preprocessed inputs (either cross power spectra or phase correlation data). Our pipeline leverages the high sensitivity of Fourier methods in a manner that is resilient to the parallax distortion of a forward-facing camera. Via sequential training over several path trajectories, models generalize to predict the 3-D movement in unseen trajectory environments. Models with no hidden layer are less accurate initially but converge faster with sequential training over different flightpaths. Our results show important considerations and trade-offs between input data preprocessing (compression) and model complexity (convergence).
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Real-Time 3D Hand Pose Estimation with 3D Convolutional Neural Networks
    Ge, Liuhao
    Liang, Hui
    Yuan, Junsong
    Thalmann, Daniel
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2019, 41 (04) : 956 - 970
  • [2] Towards real-time photorealistic 3D holography with deep neural networks
    Shi, Liang
    Li, Beichen
    Kim, Changil
    Kellnhofer, Petr
    Matusik, Wojciech
    NATURE, 2021, 591 (7849) : 234 - +
  • [3] Continual 3D Convolutional Neural Networks for Real-time Processing of Videos
    Hedegaard, Lukas
    Iosifidis, Alexandros
    COMPUTER VISION - ECCV 2022, PT IV, 2022, 13664 : 369 - 385
  • [4] Towards real-time photorealistic 3D holography with deep neural networks
    Liang Shi
    Beichen Li
    Changil Kim
    Petr Kellnhofer
    Wojciech Matusik
    Nature, 2021, 591 : 234 - 239
  • [5] An Experiment of a 3D Real-Time Robust Visual Odometry for Intelligent Vehicles
    Rodriguez F, Sergio A.
    Fremont, Vincent
    Bonnifait, Philippe
    2009 12TH INTERNATIONAL IEEE CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC 2009), 2009, : 226 - 231
  • [6] Optimal control for real-time visualization and 3D rendering using neural networks
    Yuan, YW
    Zhan, HH
    Yan, LM
    PROCEEDINGS OF THE 2004 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2004, : 3460 - 3463
  • [7] Using 3D Convolutional Neural Networks for Real-time Detection of Soccer Events
    Rongved, Olav A. Nergard
    Hicks, Steven A.
    Thambawita, Vajira
    Stensland, Hakon K.
    Zouganeli, Evi
    Johansen, Dag
    Midoglu, Cise
    Riegler, Michael A.
    Halvorsen, Pal
    INTERNATIONAL JOURNAL OF SEMANTIC COMPUTING, 2021, 15 (02) : 161 - 187
  • [8] Real-time 3D
    Coco, D
    COMPUTER GRAPHICS WORLD, 1995, 18 (12) : 22 - +
  • [9] Real-time monitoring of driver drowsiness on mobile platforms using 3D neural networks
    Wijnands, Jasper S.
    Thompson, Jason
    Nice, Kerry A.
    Aschwanden, Gideon D. P. A.
    Stevenson, Mark
    NEURAL COMPUTING & APPLICATIONS, 2020, 32 (13): : 9731 - 9743
  • [10] Author Correction: Towards real-time photorealistic 3D holography with deep neural networks
    Liang Shi
    Beichen Li
    Changil Kim
    Petr Kellnhofer
    Wojciech Matusik
    Nature, 2021, 593 : E13 - E13