Two-stage coarse-to-fine image anomaly segmentation and detection model

被引:2
|
作者
Shah, Rizwan Ali [1 ]
Urmonov, Odilbek [2 ]
Kim, Hyungwon [1 ]
机构
[1] Chungbuk Natl Univ, Dept Elect, Cheongju, South Korea
[2] MSISLAB Inc, Image Recognit Div, Cheongju, South Korea
基金
新加坡国家研究基金会;
关键词
Anomaly detection and segmentation; Convolutional neural network; Pseudo anomaly insertion; Superpixel segmentation;
D O I
10.1016/j.imavis.2023.104817
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Existing Convolutional Neural Network (CNN) based anomaly detection and segmentation approaches are overly sensitive or not sensitive enough to noise, resulting in anomaly patterns, partially detected in the testing stage. The previous methods may also differentiate normal and abnormal images, but they cannot identify the location of anomaly presented in test images with high accuracy. To address this issue, we propose a two-stage CNN model for coarse-to-fine anomaly segmentation and detection called (TASAD). In both stages of TASAD, we train our model on a mixture of normal and abnormal training samples. The abnormal images are obtained by inserting pseudo-anomaly patterns that are automatically generated from anomaly source images. We use a novel and sophisticated anomaly insertion technique to generate various anomalous samples. In the first stage, we design a coarse anomaly segmentation (CAS) model that takes a whole image as an input, while in the second stage, we train a fine anomaly segmentation (FAS) model on image patches. FAS model improves detection and segmentation performance by refining anomaly patterns partially detected by CAS model. We train our framework on MVTec dataset and compare it with state-of-the-art (SOTA) methods. The proposed architecture leads to a compact model size - four times smaller than the SOTA method, while exhibiting better pixel-level accuracy. TASAD can also be applied to SOTAs to further improve their anomaly detection performance. Our experiments demonstrate that when applied to the latest SOTAs, TASAD improves the average precision (AP) performance of previous methods by 6.2%. For reproducibility of the results, code is provided at https://github.com/Riz wanAliQau/tasad.git.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Coarse-to-Fine Foraminifera Image Segmentation through 3D and Deep Features
    Ge, Qian
    Zhong, Boxuan
    Kanakiya, Bhargav
    Mitra, Ritayan
    Marchitto, Thomas
    Lobaton, Edgar
    2017 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2017,
  • [42] Coarse-to-Fine Particle Segmentation in Microscopic Urinary Images
    Qian, Jiye
    Fang, Bin
    Li, Chunyan
    Chen, Lin
    2009 3RD INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICAL ENGINEERING, VOLS 1-11, 2009, : 1978 - 1981
  • [43] COARSE-TO-FINE MOVING REGION SEGMENTATION IN COMPRESSED VIDEO
    Chen, Yue-Meng
    Bajic, Ivan V.
    Saeedi, Parvaneh
    2009 10TH INTERNATIONAL WORKSHOP ON IMAGE ANALYSIS FOR MULTIMEDIA INTERACTIVE SERVICES, 2009, : 45 - 48
  • [44] DualSLIC: An Automatic Coarse-to-Fine Method on Pancreas Segmentation
    Zhao, Jinjin
    Ma, He
    Meng, Qingyu
    2018 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2018, : 2043 - 2048
  • [45] Complementary Coarse-to-Fine Matching for Video Object Segmentation
    Chen, Zhen
    Yang, Ming
    Zhang, Shiliang
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2023, 19 (06)
  • [46] CasNet:A Cascade Coarse-to-Fine Network for Semantic Segmentation
    Zhenyang Wang
    Zhidong Deng
    Shiyao Wang
    Tsinghua Science and Technology, 2019, 24 (02) : 207 - 215
  • [47] Coarse-to-Fine Annotation Enrichment for Semantic Segmentation Learning
    Luo, Yadan
    Wang, Ziwei
    Huang, Zi
    Yang, Yang
    Zhao, Cong
    CIKM'18: PROCEEDINGS OF THE 27TH ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, 2018, : 237 - 246
  • [48] Continual coarse-to-fine domain adaptation in semantic segmentation
    Shenaj, Donald
    Barbato, Francesco
    Michieli, Umberto
    Zanuttigh, Pietro
    IMAGE AND VISION COMPUTING, 2022, 121
  • [49] Fast portrait automatic segmentation with coarse-to-fine CNNs
    Zhang Xijin
    Li Ruilong
    Zhang Songhai
    CADDM, 2017, (02) : 39 - 49
  • [50] CasNet: A Cascade Coarse-to-Fine Network for Semantic Segmentation
    Wang, Zhenyang
    Deng, Zhidong
    Wang, Shiyao
    TSINGHUA SCIENCE AND TECHNOLOGY, 2019, 24 (02) : 207 - 215