Auto-tuning extended Kalman filters to improve state estimation

被引:4
|
作者
Boulkroune, Boulaid [1 ]
Geebelen, Kurt [1 ]
Wan, Jia [1 ]
van Nunen, Ellen [1 ]
机构
[1] Flanders Make Vzw, Oude Diestersebaan 133, B-3920 Lommel, Belgium
关键词
D O I
10.1109/IV55152.2023.10186760
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this a paper, an auto-tuning Extend Kalman filter (EKF) approach is developed. The objective is to design an algorithm to find the optimal values of the covariance matrices Q and R. Manual tuning of those parameters is hard and time-consuming. Besides, wrong combinations of their values can lead to filter divergence and inconsistency. The proposed approach combines several metrics derived from the filter requirements especially the filter consistency. A weighted cost function is established based on the defined metrics. The approach effectiveness is tested and verified on sensor fusion problems for drone indoor localization where good results are achieved using five (5) different numerical optimization solvers.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Auto-tuning ejector for refrigeration system
    Wang, Lei
    Liu, Jiapeng
    Zou, Tao
    Du, Jingwei
    Jia, Fengze
    ENERGY, 2018, 161 : 536 - 543
  • [42] Auto-tuning of cascade control systems
    Song, SH
    Cai, WJ
    Wang, YG
    ISA TRANSACTIONS, 2003, 42 (01) : 63 - 72
  • [43] Auto-tuning of a tunable structural insert
    Harland, NR
    Mace, BR
    Jones, RW
    NOISE AND VIBRATION ENGINEERING, VOLS 1 - 3, PROCEEDINGS, 2001, : 77 - 84
  • [44] Auto-tuning Kernel Mean Matching
    Miao, Yun-Qian
    Farahat, Ahmed K.
    Kamel, Mohamed S.
    2013 IEEE 13TH INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW), 2013, : 560 - 567
  • [45] A Note on Auto-tuning GEMM for GPUs
    Li, Yinan
    Dongarra, Jack
    Tomov, Stanimire
    COMPUTATIONAL SCIENCE - ICCS 2009, PART I, 2009, 5544 : 884 - 892
  • [46] Threshold Auto-Tuning Metric Learning
    Rivero, Rachelle
    Onuma, Yuya
    Kato, Tsuyoshi
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2019, E102D (06) : 1163 - 1170
  • [47] Auto-Tuning Active Queue Management
    Novak, Joe H.
    Kasera, Sneha Kumar
    2017 9TH INTERNATIONAL CONFERENCE ON COMMUNICATION SYSTEMS AND NETWORKS (COMSNETS), 2017, : 136 - 143
  • [48] Design A RBF Neural Network Auto-tuning Controller for Magnetic Levitation System with Kalman Filter
    Tong, Chia-Chang
    Ooi, En-Tzer
    Liu, Jhao-Cheng
    2015 IEEE/SICE INTERNATIONAL SYMPOSIUM ON SYSTEM INTEGRATION (SII), 2015, : 528 - 533
  • [49] Vehicle state estimation based on Kalman filters
    Bersani, M.
    Vignati, M.
    Mentasti, S.
    Arrigoni, S.
    Cheli, F.
    2019 AEIT INTERNATIONAL CONFERENCE OF ELECTRICAL AND ELECTRONIC TECHNOLOGIES FOR AUTOMOTIVE (AEIT AUTOMOTIVE), 2019,
  • [50] Tuning of Extended Kalman Filters for Sensorless Motion Control with Induction Motor
    Alonge, Francesco
    D'Ippolito, Filippo
    Fagiolini, Adriano
    Garraffa, Giovanni
    Raimondi, Francesco Maria
    Sferlazza, Antonino
    2019 AEIT INTERNATIONAL CONFERENCE OF ELECTRICAL AND ELECTRONIC TECHNOLOGIES FOR AUTOMOTIVE (AEIT AUTOMOTIVE), 2019,