Cancer detection in breast cells using a hybrid method based on deep complex neural network and data mining

被引:2
|
作者
Yang, Ling [1 ]
Peng, Shengguang [2 ]
Yahya, Rebaz Othman [3 ]
Qian, Leren [4 ]
机构
[1] Harbin Guangsha Coll, Sch Informat, Harbin 150025, Heilongjiang, Peoples R China
[2] Pingxiang Univ, Sch Engn & Management, Pingxiang 337055, Jiangxi, Peoples R China
[3] Cihan Univ Erbil, Coll Sci, Dept Comp Sci, Erbil, Iraq
[4] Arizona State Univ, Sch Comp & Augmented Intelligence, Tempe, AZ 85281 USA
关键词
Data mining; Breast cells; Thermographic images; Breast cancer; Deep complex neural network; CLASSIFICATION; THERMOGRAPHY;
D O I
10.1007/s00432-023-05191-2
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
IntroductionDiagnosis of cancer in breast cells is an important and vital issue in the field of medicine. In this context, the use of advanced methods such as deep complex neural networks and data mining can significantly improve the accuracy and speed of diagnosis. A hybrid approach that can be effective in breast cancer diagnosis is the use of deep complex neural networks and data mining. Due to their powerful nonlinear capabilities in extracting complex features from data, deep neural networks have a very good ability to detect patterns related to cancer. By analyzing millions of data related to breast cells and recognizing common and unusual patterns in them, these networks are able to diagnose cancer with high accuracy. Also, the use of data mining method plays an important role in this process.MethodologyUsing data mining algorithms and techniques, useful information can be extracted from the available data and the characteristics of healthy and cancerous cells can be separated. This information can be given as input to the deep neural network to achieve more accurate diagnosis. Another method to diagnose breast cancer is the use of thermography, which we use in this research along with data mining and deep learning.ResultsThermography uses an infrared camera to record the temperature of the target area. This method of breast cancer imaging is less expensive and completely safe compared to other methods. A total of 187 volunteers including 152 healthy people and 35 cancer patients were evaluated. Each person had ten thermographic images, resulting in a total of 1870 thermographic images. Four alternative deep complex neural network models, namely ResNet18, ResNet50, VGG19, and Xception, were used to identify thermal images, including benign and malignant images.ConculsionThe evaluation results showed that the use of a combined method based on deep complex neural network and data mining in the diagnosis of cancer in breast cells can bring a significant improvement in the accuracy and speed of diagnosis of this important disease.
引用
收藏
页码:13331 / 13344
页数:14
相关论文
共 50 条
  • [31] A Network Attack Detection Method Using SDA and Deep Neural Network Based on Internet of Things
    Jingwei Li
    Bo Sun
    International Journal of Wireless Information Networks, 2020, 27 : 209 - 214
  • [32] A Network Attack Detection Method Using SDA and Deep Neural Network Based on Internet of Things
    Li, Jingwei
    Sun, Bo
    INTERNATIONAL JOURNAL OF WIRELESS INFORMATION NETWORKS, 2020, 27 (02) : 209 - 214
  • [33] Breast Cancer Data Classification Using Xception-Based Neural Network
    Malve P.
    Gulhane V.
    SN Computer Science, 4 (6)
  • [34] Predictive Diagnosis of Breast Cancer Using Deep Neural Network
    Subha, T.
    Susila, N.
    Ranjana, R.
    Anushya, R.
    Amritha, S.
    BIOSCIENCE BIOTECHNOLOGY RESEARCH COMMUNICATIONS, 2021, 14 (05): : 218 - 224
  • [35] Similarity detection method of abnormal data in network based on data mining
    Sun, Xiang
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2020, 38 (01) : 155 - 162
  • [36] Breast Cancer Semantic Segmentation for Accurate Breast Cancer Detection with an Ensemble Deep Neural Network
    Nagalakshmi, T.
    NEURAL PROCESSING LETTERS, 2022, 54 (06) : 5185 - 5198
  • [37] Breast Cancer Semantic Segmentation for Accurate Breast Cancer Detection with an Ensemble Deep Neural Network
    T. Nagalakshmi
    Neural Processing Letters, 2022, 54 : 5185 - 5198
  • [38] Data Fusion Based Hybrid Deep Neural Network Method for Solar PV Power Forecasting
    de Jestis, Dan A. Rosa
    Mandal, Paras
    Velez-Reyes, Miguel
    Chakraborty, Shantanu
    Senjyu, Tomonobu
    2019 51ST NORTH AMERICAN POWER SYMPOSIUM (NAPS), 2019,
  • [39] Detection of breast cancer using the infinite feature selection with genetic algorithm and deep neural network
    S. S. Ittannavar
    R. H. Havaldar
    Distributed and Parallel Databases, 2022, 40 : 675 - 697
  • [40] Detection of breast cancer using the infinite feature selection with genetic algorithm and deep neural network
    Ittannavar, S. S.
    Havaldar, R. H.
    DISTRIBUTED AND PARALLEL DATABASES, 2022, 40 (04) : 675 - 697